| [1] |
饶宇飞, 司学振, 谷青发, 等. 储能技术发展趋势及技术现状分析[J]. 电器与能效管理技术, 2020(10):7-15.
|
| [2] |
曹梓泉, 李雅欣, 马凌怡, 等. 基于锂电池的电氢混合储能系统研究[J]. 电器与能效管理技术, 2022(5):29-34.
|
| [3] |
李晓宇, 陈炫锴, 李嘉栩, 等. 基于机器学习的电动汽车续航里程预测[J]. 电器与能效管理技术, 2021(10):78-82.
|
| [4] |
GABBAR H, OTHMAN A, ABDUSSAMI M. Review of battery management systems(BMS)development and industrial standards[J]. Technologies, 2021, 9(2):28.
doi: 10.3390/technologies9020028
|
| [5] |
MOVASSAGH K, RAIHAN A, BALASINGAM B, et al. A critical look at coulomb counting approach for state of charge estimation in batteries[J]. Energies, 2021, 14(14):1-33.
doi: 10.3390/en14010001
|
| [6] |
CHEN X, LEI H, XIONG R, et al. A novel approach to reconstruct open circuit voltage for state of charge estimation of lithium ion batteries in electric vehicles[J]. Applied Energy, 2019, 255:113758.1-113758.14.
|
| [7] |
EE Y J, TEY K S, LIM K S, et al. Lithium-ion battery state of charge(SOC)estimation with non-electrical parameter using uniform fiber Bragg grating(FBG)[J]. Journal of Energy Storage, 2021, 40:102704.1-102704.9.
|
| [8] |
ZHANG L, LIU X, LI K, et al. Real-time battery temperature monitoring using FBG sensors:A data-driven calibration method[J]. IEEE Sensors Journal, 2022, 22(19):18639-18648.
doi: 10.1109/JSEN.2022.3200589
|
| [9] |
CHEN D, ZHAO Q, ZHENG Y, et al. Recent progress in lithium-ion battery safety monitoring based on fiber bragg grating sensors[J]. Sensors, 2023, 23(12):5609.
doi: 10.3390/s23125609
|
| [10] |
许守平, 胡娟, 徐翀, 等. 一种基于光纤光栅传感的锂离子电池温度测量方法[J]. 电器与能效管理技术, 2020(12):85-88.
|
| [11] |
BANDYOPADHYAY S, FABIAN M, LI K, et al. Fiber-Bragg-grating-based sensor system to measure battery state of charge based on a machine learning model[J]. Batteries, 2023, 9(10):508.
doi: 10.3390/batteries9100508
|
| [12] |
PENG J, JIA S, YU H, et al. Design and experiment of FBG sensors for temperature monitoring on external electrode of lithium-ion batteries[J]. IEEE Sensors Journal, 2020, 21(4):4628-4634.
doi: 10.1109/JSEN.7361
|
| [13] |
SOMMER L W, KIESEL P, GANGULI A, et al. Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors[J]. Journal of Power Sources, 2015, 296:46-52.
doi: 10.1016/j.jpowsour.2015.07.025
|
| [14] |
史雯慧, 王浩, 曹慧, 等. 基于光纤布拉格光栅传感的锂电池内部状态原位监测[J]. 光子学报, 2023, 52(9):156-164.
|
| [15] |
LI Y, LI K, LIU X, et al. A hybrid machine learning framework for joint SOC and SOH estimation of lithium-ion batteries assisted with fiber sensor measurements[J]. Applied Energy, 2022, 325:1-12.
|
| [16] |
PENG J, JIA S, YANG S, et al. State estimation of lithium-ion batteries based on strain parameter monitored by fiber Bragg grating sensors[J]. Journal of Energy Storage, 2022, 52:104950.1-104950.10.
|
| [17] |
XIA X, WU W, LI Z, et al. State of charge estimation for commercial Li-ion battery based on simultaneously strain and temperature monitoring over optical fiber sensors[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73:2516411.1-2516411.11.
|
| [18] |
RAO Y. In-fibre Bragg grating sensors[J]. Measurement Science and Technology, 1997, 8(4):355.
doi: 10.1088/0957-0233/8/4/002
|
| [19] |
GANGULI A, SAHA B, RAGHAVAN A, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2:Internal cell signals and utility for state estimation[J]. Journal of Power Sources, 2017, 341:474-482.
doi: 10.1016/j.jpowsour.2016.11.103
|
| [20] |
SUN Z, BEBIS G, MILLER R. Object detection using feature subset selection[J]. Pattern Recognition, 2004, 37(11):2165-2176.
doi: 10.1016/j.patcog.2004.03.013
|
| [21] |
SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5):383-391.
doi: 10.1038/s41560-019-0356-8
|
| [22] |
高书豫, 刘树鑫, 邹嫣然, 等. 基于 GA-SVR 的交流接触器剩余电寿命预测[J]. 电器与能效管理技术, 2023(5):9-14.
|
| [23] |
LIM K S, ONG Z C, LEE Y S, et al. Pseudohigh-resolution spectral interrogation scheme for small signals from FBG sensors[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 68(8):2964-2970.
doi: 10.1109/TIM.19
|
| [24] |
DONOHO D L, JOHNSTONE J M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3):425-455.
doi: 10.1093/biomet/81.3.425
|
| [25] |
WANG C, WANG Y, DONG L, et al. SOC estimation of lithium battery based on the combination of electrical parameters and FBG non-electrical parameters and using NGO-BP model[J]. Optical Fiber Technology, 2023, 81:1.1-1.10.
|
| [26] |
BHATTACHARJEE A, VERMA A, MISHRA S, et al. Estimating state of charge for xEV batteries using 1D convolutional neural networks and transfer learning[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4):3123-3135.
doi: 10.1109/TVT.2021.3064287
|