电器与能效管理技术 ›› 2021, Vol. 0 ›› Issue (9): 10-18.doi: 10.16628/j.cnki.2095-8188.2021.09.002

• 综述 • 上一篇    下一篇

基于数据驱动法的锂离子电池寿命预测关键技术综述

李建林1, 王哲1, 许德智2, 马福元3, 孟高军4   

  1. 1.储能技术工程研究中心(北方工业大学), 北京 100144
    2.江南大学 物联网工程学院, 江苏 无锡 214122
    3.浙江浙能技术研究院有限公司, 浙江 杭州 311121
    4.南京工程学院, 江苏 南京 211167
  • 收稿日期:2021-05-10 出版日期:2021-09-30 发布日期:2022-01-25
  • 作者简介:李建林(1976—),男,教授,博士,研究方向为大规模储能技术。|王 哲(1997—),男,硕士研究生,研究方向为大规模储能技术。|许德智(1985—),男,副教授,博士,研究方向为故障诊断与容错控制。
  • 基金资助:
    北京市自然科学基金项目(21JC0026)

Overview of Key Technologies for Lithium-ion Battery Life Prediction Based on Data-Driven Methods

LI Jianlin1, WANG Zhe1, XU Dezhi2, MA Fuyuan3, MENG Gaojun4   

  1. 1. Energy Storage Technology Engineering Research Center (North China University of Technology),Beijing 100144, China
    2. School of Internet of Things Engineering,Jiangnan University, Wuxi 214122, China
    3. Zhejiang Zheneng Technology Research Institute Co.,Ltd., Hangzhou 311121, China
    4. Nanjing Institute of Technology, Nanjing 211167, China]
  • Received:2021-05-10 Online:2021-09-30 Published:2022-01-25

摘要:

近年来,电动汽车、电子产品和航天系统等领域的应用对锂离子电池的要求越来越高,将锂离子电池在寿命殆尽时对其进行及时更换,有利于合理地利用锂离子电池的有效性能。首先针对锂离子电池寿命预测的传统数据驱动方法进行了梳理,然后分析了锂离子电池寿命预测的现有方法,其次对锂离子电池寿命预测的传统和现有方法进行了对比,最后通过对比分析传统和现有锂离子电池寿命预测方法的优劣,使锂离子电池储能系统的管理和控制更加有效。

关键词: 数据驱动, 锂离子电池, 寿命预测, 传统方法, 现有方法

Abstract:

In recent years,applications in the fields of electric vehicles,electronic products and aerospace systems have placed higher and higher requirements on lithium-ion batteries.The timely replacement of lithium-ion batteries at the end of their life is conducive to the rational use of lithium-ion batteries.performance.This article first combs the traditional data-driven methods of lithium-ion battery life prediction,then analyzes the existing methods of lithium-ion battery life prediction,and then compares the traditional and existing methods of lithium-ion battery life prediction,and finally compares them.By analyzing the advantages and disadvantages of traditional and existing lithium-ion battery life prediction methods,the management and control of the lithium-ion battery energy storage system are more effective.

Key words: data-driver, lithium-ion battery, life prediction, traditional method, existing method

中图分类号: