电器与能效管理技术 ›› 2025, Vol. 0 ›› Issue (10): 72-83.doi: 10.16628/j.cnki.2095-8188.2025.10.010

• 储能技术 • 上一篇    下一篇

结合光纤光栅传感器与特征筛选的锂电池荷电状态估计

何云, 盛文娟   

  1. 上海电力大学 自动化工程学院, 上海 200090
  • 收稿日期:2025-07-24 出版日期:2025-10-30 发布日期:2025-11-20
  • 作者简介:何 云(1999—),男,硕士研究生,研究方向为锂电池SOC、RUL等。|盛文娟(1982—),女,博士,副教授,研究方向为光纤光栅传感解耦,人工智能算法等。
  • 基金资助:
    国家自然科学基金(61905139);上海市科委重点实验室项目(SKLSF02021-003)

State of Charge Estimation for Lithium-Ion Batteries Combining Fiber Bragg Grating Sensor and Feature Screening

HE Yun, SHENG Wenjuan   

  1. School of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China
  • Received:2025-07-24 Online:2025-10-30 Published:2025-11-20

摘要:

光纤布拉格光栅(FBG)传感器正逐步成为提升锂电池荷电状态(SOC)估计精度的创新解决方案,而锂电池表面应变的位置和数量均会影响SOC的估计精度,提出一种基于序列前向选择(SFS)算法的多应变特征筛选方法。针对SFS算法在特征选择过程中存在的模型泛化能力波动问题,引入弹性网络(Elastic Net)与留一交叉验证(LOOCV)机制以提升特征筛选稳定性与模型的泛化性能,再利用遗传算法优化反向传播(GA-BP)神经网络对锂电池SOC进行估计。实验结果表明,经特征筛选后,锂电池SOC估计的均方根误差(RMSE)降低至0.635%,平均绝对误差(MAE)为0.419%,拟合优度(R2)达0.999。所提方法为多位置FBG应变信号的特征筛选问题提出了解决思路,对基于光纤传感器的锂电池SOC高精度估计提供了技术参考。

关键词: 光纤布拉格光栅, 应变, 锂离子电池, 荷电状态估计, 特征筛选

Abstract:

Fiber Bragg grating(FBG) sensor is gradually emerging as an innovative solution to enhance the accuracy of state of charge(SOC) estimation for lithium-ion batteries.However, both the positions and the number of strain sensors on the surface of lithium-ion batteries affect the accuracy of SOC estimation.Therefore, a multi-strain feature selection method based on the sequential forward selection(SFS) algorithm is proposed.To address the issue of fluctuations in model generalization ability existing in the SFS algorithm during the feature selection process, the elastic net and leave-one-out cross-validation(LOOCV) mechanisms are introduced to improve the stability of feature selection and the generalization performance of the model.Subsequently, the genetic algorithm-optimized backpropagation neural network(GA-BP) is utilized to estimate the SOC of lithium-ion batteries.Experimental results show that the root mean square error(RMSE) of lithium-ion battery SOC estimation is reduced to 0.635%, the mean absolute error(MAE) is 0.419%, and the coefficient of determination(R2) reaches 0.999 after feature selection.The proposed method provides a solution to the feature selection problem of multi-position FBG strain signals and offers technical reference for high-precision SOC estimation of lithium-ion batteries based on optical fiber sensor.

Key words: fiber Bragg grating(FBG), strain, lithium-ion battery, state of charge(SOC) estimation, feature screening

中图分类号: