电器与能效管理技术 ›› 2024, Vol. 0 ›› Issue (6): 49-58.doi: 10.16628/j.cnki.2095-8188.2024.06.008

• 评估与预测技术 • 上一篇    下一篇

基于改进EKF算法的锂离子电池SOC在线估计*

崔晓丹, 吴家龙, 邓馗, 王彦品, 冯佳期, 李亚杰   

  1. 国电南瑞科技股份有限公司, 江苏 南京 211106
  • 收稿日期:2024-04-09 出版日期:2024-06-30 发布日期:2024-07-15
  • 作者简介:崔晓丹(1981—),男,正高级工程师,博士,主要从事电力系统安全稳定分析及控制研究。|吴家龙(1987—),男,高级工程师,主要从事新能源高占比电力系统的建模与仿真分析研究。|邓 馗(1993—),男,助理工程师,主要从事新能源并网设备的建模与仿真分析研究。
  • 基金资助:
    *国网南瑞科技股份有限公司科技项目《锂电池储能系统电磁暂态模型构建技术研究》

Online State of Charge Estimation of Lithium-ion Battery Based on Improved Extended Kalman Filter Algorithm

CUI Xiaodan, WU Jialong, DENG Kui, WANG Yanpin, FENG Jiaqi, LI Yajie   

  1. NARI Technology Co.,Ltd., Nanjing 211106, China
  • Received:2024-04-09 Online:2024-06-30 Published:2024-07-15

摘要:

锂离子电池因其能量密度高、自放电率低、污染小等优势,已经在储能电站领域得到广泛应用。针对锂离子电池各项状态预测,首先搭建二阶RC等效电路模型,然后采用带遗忘因子的递推最小二乘法(FFRLS)对模型参数进行辨识,提出一种基于自适应扩展卡尔曼滤波(AEKF)算法的SOC-SOH联合估计方法。在不同电池工况下进行对比验证,结果表明,与扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)相比,所提方法预测SOC和SOH的精确度和计算效率均有所提高,具有一定的实用价值。

关键词: 锂离子电池, 二阶RC模型, 参数辨识, SOH估计, SOC估计, AEKF算法

Abstract:

Lithium-ion batteries have been widely used in the field of energy storage power stations due to their high energy density, low self-discharge rate and low pollution. To solve the accurate prediction of various states of lithium-ion batteries, a second-order RC equivalent circuit model is first built, and then the parameters of the model are identified by using the forgetting factor recursive least squares (FFRLS) method. A joint SOC-SOH estimation method based on adaptive extended Kalman filtering (AEKF) algorithm is proposed, and the method is compared and verified under different battery conditions. Experimental results show that compared with the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), the proposed method can improve the accuracy and computational efficiency of SOC and SOH prediction, and has certain practical value.

Key words: lithium battery, second-order RC model, parameter identification, SOH estimation, SOC estimation, AEKF algorithm

中图分类号: