电器与能效管理技术 ›› 2024, Vol. 0 ›› Issue (7): 1-8.doi: 10.16628/j.cnki.2095-8188.2024.07.001

• 综述 •    下一篇

电磁继电器的剩余使用寿命预测方法综述

马东坤, 王召斌, 何天洋   

  1. 江苏科技大学 自动化学院, 江苏 镇江 212003
  • 收稿日期:2024-03-24 出版日期:2024-07-30 发布日期:2024-08-21
  • 作者简介:马东坤(2000—),男,硕士研究生,研究方向为电磁继电器的寿命预测技术。|王召斌(1982—),男,副教授,博士,研究方向为航天电器的可靠性理论与测试技术。|何天洋(2000—),男,硕士研究生,研究方向为电磁继电器的可靠性退化试验分析技术。
  • 基金资助:
    国家自然科基金资助项目(51507074)

A Comprehensive Review of Electromagnetic Relay Remaining Useful Life Prediction Methods

MA Dongkun, WANG Zhaobin, HE Tianyang   

  1. College of Automation,Jiangsu University of Science and Technology, Zhenjiang 212003, China
  • Received:2024-03-24 Online:2024-07-30 Published:2024-08-21

摘要:

介绍了电磁继电器剩余使用寿命预测技术的研究现状,系统梳理并比较了现有的电磁继电器剩余使用寿命预测方法,综合评述了灰色系统模型、统计分析与神经网络等多种预测技术的应用,通过梳理近年来的研究文献,总结了各种方法的优势与局限性,以提升电力系统的可靠性。尽管各种方法均能在一定程度上实现电磁继电器剩余使用寿命的预测,但在准确性、适用性以及易用性等方面仍存在显著差异。未来研究的方向为研发集成多种预测技术的混合模型、实时监测数据的实用预测系统,以提高预测的准确性与适用性。

关键词: 电磁继电器, 剩余使用寿命预测, 灰色系统模型, 统计分析, 神经网络

Abstract:

This comprehensive review focuses on the technological advancements in predicting the remaining useful life (RUL) of electromagnetic relays,offering an insightful overview of the current research landscape.The existing methodologies for predicting the RUL of electromagnetic relays are systematically organized and contrasted.The application status and efficacy of various prediction techniques is delved into,including grey system models,statistical analysis,and neural networks.By examining recent scholarly articles,the review highlights the strengths and limitations of these diverse methods,emphasizing their role in enhancing the reliability of power systems.While each approach contributes to some extent in predicting the RUL of electromagnetic relays,significant variations persist in terms of accuracy,applicability,and user-friendliness.The future research direction is pointed that the hybrid models integrated multiple prediction technologies and the practical prediction systems incorporated real-time monitoring data are developed to augment the precision and applicability of RUL predictions.

Key words: electromagnetic relays, remaining useful life prediction, grey system model, statistical analysis, neural network

中图分类号: