[1] |
吴国沛, 余银犬, 涂文兵. 永磁同步电机故障诊断研究综述[J]. 工程设计学报, 2021, 28(5):548-558.
doi: 10.3785/j.issn.1006-754X.2021.00.078
|
[2] |
HUANG X, HABETLER T G, HARLEY R G. Detection of rotor eccentricity faults in a closed-loop drive-connected induction motor using an artificial neural network[J]. IEEE Transactions on Power Electronics, 2007, 22(4):1552-1559.
doi: 10.1109/TPEL.2007.900607
|
[3] |
POURMOOSA A A, GHODS M, FAIZ J, et al. Diagnosis and detection of dynamic eccentricity fault for permanent magnet transverse flux generator[J]. IET Electric Power Applications, 2021, 15(5):528-541.
doi: 10.1049/elp2.v15.5
|
[4] |
ZHOU T, HAN T, DROGUETT E L. Towards trustworthy machine fault diagnosis:A probabilistic Bayesian deep learning framework[J]. Reliability Engineering and System Safety, 2022, 224(8):108525.1-108525.13.
|
[5] |
ZHEN D, WANG T, GU F, et al. Fault diagnosis of motor drives using stator current signal analysis based on dynamic time warping[J]. Mechanical systems and signal processing, 2013, 34(1/2):191-202.
doi: 10.1016/j.ymssp.2012.07.018
|
[6] |
ERBAHAN O Z, ALISKAN I. Artificial bee and ant colony-assisted performance improvements in artificial neural network-based rotor fault detection[J]. Elektronika ir Elektrotechnika, 2022(2):27-34.
|
[7] |
MARTINEZ I, VILES E, CABREJAS I. Labelling drifts in a fault detection system for wind turbine maintenance[J]. Computer Science, 2021(6):1-11.
|
[8] |
CORREA-JULLIAN C, COFRE-MARTEL S, MARTIN G S, et al. Exploring quantum machine learning and feature reduction techniques for wind turbine pitch fault detection[J]. Energies, 2022, 15(8):2792.
doi: 10.3390/en15082792
|
[9] |
LI Z, WU Q, YANG S, et al. Diagnosis of rotor demagnetization and eccentricity faults for IPMSM based on deep CNN and image recognition[J]. Complex & Intelligent Systems, 2022, 8(6):5469-5488.
|
[10] |
尹文哲, 夏虹, 彭彬森, 等. 基于FFT和CNN的滚动轴承故障诊断方法[J]. 应用科技, 2021(6):48.
|
[11] |
HUSARI F, SESHADRINATH J. Incipient inter turn fault detection and severity evaluation in electric drive system using hybrid HCNN-SVM based model[J]. IEEE Transactions on Industrial Informatics, 2022, 18(3):1823-1832.
doi: 10.1109/TII.2021.3067321
|
[12] |
WIGINGTON C, STEWART S, DAVIS B, et al. Data augmentation for recognition of handwritten words and lines using a CNN-LSTM network:2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)[C]. 2017.
|
[13] |
HATAMI N, CHO T H, MECHTOUFF L, et al. CNN-LSTM based multimodal MRI and clinical data fusion for predicting functional outcome in stroke patients[C]∥Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2022:3430-3434.
|
[14] |
SONG R, JIANG Q. Application of VMD combined with CNN and LSTM in motor bearing fault:IEEE Conference on Industrial Electronics and Applications[C]. 2021.
|
[15] |
邓惟绩, 肖辉, 李金泽, 等. 基于改进长短期记忆网络和高斯过程回归的光伏功率预测方法[J]. 电器与能效管理技术, 2021(8):51-57.
|