电器与能效管理技术 ›› 2025, Vol. 0 ›› Issue (4): 7-14.doi: 10.16628/j.cnki.2095-8188.2025.04.002

• 研究与分析 • 上一篇    下一篇

基于脉冲神经网络的低压交流串联故障电弧识别方法研究

陈祖快1, 李靖1, 沈玉文2, 江松2   

  1. 1.温州大学 电气与电子工程学院, 浙江 温州 325053
    2.浙江创奇电气股份有限公司, 浙江 温州 325603
  • 收稿日期:2024-12-01 出版日期:2025-04-30 发布日期:2025-06-04
  • 作者简介:陈祖快(1998—),男,硕士研究生,研究方向为故障电弧识别。|李靖(1967—),男,博士,教授,研究方向为电器电接触与电弧、故障电弧识别。|沈玉文(1982—),男,工程师,主要从事低压电器研究工作。
  • 基金资助:
    温州市重大科技创新攻关项目(2024-00085)

Research on Low Voltage AC Series Fault Arc Identification Based on Spiking Neural Network

CHEN Zukuai1, LI Jing1, SHEN Yuwen2, JIANG Song2   

  1. 1. School of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325053, China
    2. Zhejiang Chuangqi Electric Co., Ltd., Wenzhou 325603, China
  • Received:2024-12-01 Online:2025-04-30 Published:2025-06-04

摘要:

针对电路中突然接入串联故障电弧时故障识别容易误判、漏判及识别速度慢的问题,提出一种基于脉冲神经网络的低压交流串联故障电弧识别方法。采用马尔可夫转换场对电流电弧信号进行预处理,引入泊松编码和脉冲神经元构建故障电弧识别模型。结果表明,所提方法可以有效编码故障电弧图像,故障识别的准确率相较传统的神经网络有所提升,可达98%以上。

关键词: 故障电弧, 脉冲编码, 神经元模型, 脉冲神经网络

Abstract:

In order to solve the problems of misjudgment, missing judgment and slow identification speed when the series fault arc is suddenly connected to the circuit, a low voltage AC series fault arc identification method based on spiking neural network is proposed. The current arc signal is preprocessed by Markov transition field, and the fault arc identification model is constructed by introducing Poisson coding and spiking neurons. The results show that the proposed method can effectively encode the fault arc image, and the accuracy of fault detection is higher than that of the traditional neural network, which can reach more than 98%.

Key words: fault arc, spiking coding, neuron model, spiking neural network

中图分类号: