电器与能效管理技术 ›› 2023, Vol. 0 ›› Issue (9): 69-75.doi: 10.16628/j.cnki.2095-8188.2023.09.011

• 估计与预测技术 • 上一篇    

基于AE-LSTM的锂电池剩余使用寿命预测

程俊涵1, 王书礼2, 蔡志远1   

  1. 1.沈阳工业大学, 辽宁 沈阳 110870
    2.沈阳航空航天大学, 辽宁 沈阳 110136
  • 收稿日期:2023-05-11 出版日期:2023-09-30 发布日期:2023-11-23
  • 作者简介:程俊涵(1991—),男,硕士研究生,研究方向为智能电器。|王书礼(1981—),男,副教授,博士,研究方向为新能源飞机电推进系统的集成技术、特种电机控制系统设计技术。|蔡志远(1962—),男,博士,教授,研究方向为智能电器。
  • 基金资助:
    辽宁省教育厅系列项目(JYT2020155)

Prediction of Remaining Service Life of Lithium Battery Based on AE-LSTM

CHENG Junhan1, WANG Shuli2, CAI Zhiyuan1   

  1. 1. Shenyang University of Technology, Shenyang 110870, China
    2. Shenyang Aerospace University, Shenyang 110136, China
  • Received:2023-05-11 Online:2023-09-30 Published:2023-11-23

摘要:

针对大多采用单一衰退特征对锂电池剩余使用寿命进行预测,导致预测精度低的问题,提出基于数据融合与长短期记忆网络(LSTM)相结合的预测模型。利用斯皮尔曼相关系数法,以容量比为预测目标,从马里兰大学(CALCE)实验室的锂电池开源数据集中筛选出与其相关性高的衰退特征,自编码器(AE)对筛选出来的衰退特征进行数据融合。建立AE-LSTM锂电池剩余使用寿命预测模型,同时与RNN和LSTM预测模型进行对比。通过实例分析表明,所提方法预测精度高,能够满足实际工程的需要。

关键词: 锂电池剩余使用寿命, 特征选择, 特征融合, 循环神经网络

Abstract:

A prediction model based on data fusion and long short term memory network (LSTM) is proposed to address the issue of low prediction accuracy in predicting the remaining service life of lithium batteries,which mostly uses a single decay feature.Spearman correlation coefficient method is used to select the decay features with high correlation from the open source data set of lithium battery in the laboratory of University of Maryland (CALCE) with the capacity ratio as the prediction target.Auto encoder (AE) is used to perform data fusion on the decay features.The remaining service life prediction model of AE-LSTM lithium battery is established and compared with the prediction model of RNN and LSTM.The example shows that the proposed method has high prediction accuracy and can meet the needs of practical engineering.

Key words: remaining service life of lithium battery, feature selection, feature fusion, recurrent neural network

中图分类号: