[1] |
吴宁宁, 殷志刚, 曹敏花. 快速充电锂离子电池研究进展[J]. 新能源进展, 2022, 10(4):325-339.
|
[2] |
孙方静, 韦连梅, 张家玮, 等. 锂离子电池快充石墨负极材料的研究进展及评价方法[J]. 储能科学与技术, 2017, 6(6):1223-1230.
doi: 10.12028/j.issn.2095-4239.2017.0098
|
[3] |
特斯拉官网. 超级快充[EB/OL].[2024-09-14]. https://www.tesla.cn/support/supercharger.
|
[4] |
小鹏官网. High-voltage fast charge[EB/OL]. [2024-09-14]. https://www.xiaopeng.com/charging.html.
|
[5] |
保时捷官网. 电动汽车充电站[EB/OL]. [2024-09-14]. https://newsroom.porsche.com/zh/technology/cn-porsche-e-mobility-fast-charging-modular-building-blocks-system-electricity-grid-visitor-frequency-space-constraints-power-electronics-cooling-unit-pit-stop-missione-taycan-engineering-2018-1-15848.html.
|
[6] |
欧阳明高. 如何做好动力电池热失控的安全防控?[J]. 汽车纵横, 2019(7):20-23.
|
[7] |
SPOTNITZ R, FRANKLINB J. Abuse behavior of high-power,lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1):81-100.
|
[8] |
LIU J, WANG Z, BAI J. Influences of multi factors on thermal runaway induced by overcharging of lithium-ion battery[J]. Journal of Energy Chemistry, 2022,70:531-541.
|
[9] |
LI Y, FENG X, REN D, et al. Thermal runaway triggered by plated lithium on the anode after fast charging[J]. ACS Applied Materials & Interfaces, 2019, 11(50):46839-46850.
|
[10] |
褚政宇. 基于降维电化学模型的锂离子动力电池无析锂快充控制[D]. 北京: 清华大学, 2019.
|
[11] |
安坤, 田政, 赵锦, 等. 浅析电化学储能电站建设中存在的安全隐患及解决措施[J]. 电器与能效管理技术, 2020(10):107-113.
|
[12] |
冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016.
|
[13] |
张志刚, 张涛, 汤爱华, 等. 车用锂电池健康状态下快充方法研究综述[J]. 西南大学学报(自然科学版), 2022, 44(2):194-206.
|
[14] |
杲齐新, 赵景腾, 李国兴. 锂离子电池快速充电研究进展[J]. 储能科学与技术, 2023, 12(7):2166-2184.
doi: 10.19799/j.cnki.2095-4239.2023.0287
|
[15] |
LI Y, FENG X, REN D, et al. Varying thermal runaway mechanism caused by fast charging for high energy pouch batteries[J]. ECS Meeting Abstracts, 2019(6):585.
|
[16] |
KEYSER M, PESARAN A, LI Q, et al. Enabling fast charging-battery thermal considerations[J]. Journal of Power Sources, 2017,367:228-236.
|
[17] |
TOMASZEWSKA A, CHU Z Y, FENG X N, et al. Lithium-ion battery fast charging:A review[J]. eTransportation, 2019,1:100011.
|
[18] |
KLEIN R, CHATURVEDI N A, CHRISTENSEN J, et al. Electrochemical model based observer design for a lithium-ion battery[J]. IEEE Transactions on Control Systems Technology, 2013, 21(2):289-301.
|
[19] |
刘倩倩, 赵言本, 吕超. 磷酸铁锂电池大倍率充放电模型仿真研究[J]. 电器与能效管理技术, 2020(5):57-61.
|
[20] |
KLEIN R, CHATURVEDI N A, CHRISTENSEN J, et al. Optimal charging strategies in lithium-ion battery[C]// Proceedings of the Proceedings of the 2011 American Control Conference,2011:382-387.
|
[21] |
CHU Z Y, FENG X N, LU L G, et al. Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model[J]. Applied Energy, 2017,204:1240-1250.
|
[22] |
周旋, 周萍, 郑岳久, 等. 锂离子电池宽温度区间无析锂快充策略[J]. 汽车安全与节能学报, 2020, 11(3):397-405.
|
[23] |
劳力. 高比能锂离子动力电池系统充电策略及热失控安全研究[D]. 合肥: 中国科学技术大学, 2020.
|
[24] |
YANG X G, LIU T, GAO Y, et al. Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries[J]. Joule, 2019, 3(12):3002-3019.
|
[25] |
YANG X G, LIU T, WANG C Y. Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles[J]. Nature Energy, 2021, 6(2):176-185.
|
[26] |
WANG C Y, ZHANG G, GE S, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587):515-518.
|
[27] |
YANG X G, ZHANG G, GE S, et al. Fast charging of lithium-ion batteries at all temperatures[J]. Proc Natl Acad Sci USA, 2018, 115(28):7266-7271.
|
[28] |
RODRIGUES M T F, SHKROB I A, COLCLASURE A M, et al. Fast charging of Li-ion cells:Part IV.temperature effects and “safe lines” to avoid lithium plating[J]. Journal of the Electrochemical Society, 2020, 167(13):1-12.
|
[29] |
AN F, ZHANG R, WEI Z, et al. Multi-stage constant-current charging protocol for a high-energy-density pouch cell based on a 622NCM/graphite system[J]. RSC Advances, 2019, 9(37):21498-21506.
|
[30] |
PURUSHOTHAMAN B K, LANDAU U. Rapid charging of lithium-ion batteries using pulsed currents:A theoretical analysis[J]. Journal of the Electrochemical Society, 2006, 153(3):A533-A542.
|
[31] |
高春兰, 谢青松, 李延强, 等. 基于锂离子动力电池的分阶段脉冲充电法研究[J]. 电器与能效管理技术, 2016(18):50-55.
|
[32] |
ARYANFAR A, BROOKS D, MERINOV B V, et al. Dynamics of lithium dendrite growth and inhibition:Pulse charging experiments and Monte Carlo calculations[J]. The Journal of Physical Chemistry Letters, 2014, 5(10):1721-1726.
|
[33] |
SONG M, CHOE S Y. Fast and safe charging method suppressing side reaction and lithium deposition reaction in lithium ion battery[J]. Journal of Power Sources, 2019,436:226835.
|
[34] |
刘倩倩. 锂离子电池负极析锂机制及抑制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
[35] |
PARIKH D, CHRISTENSEN T, LI J. Correlating the influence of porosity,tortuosity,and mass loading on the energy density of LiNi0.6Mn0.2Co0.2O2 cathodes under extreme fast charging (XFC) conditions[J]. Journal of Power Sources, 2020,474:228601.
|
[36] |
QI S, WANG H, HE J, et al. Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries[J]. Science Bulletin, 2021, 66(7):685-693.
doi: 10.1016/j.scib.2020.09.018
pmid: 36654444
|
[37] |
LI F, HE J, LIU J, et al. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(12):6600-6608.
|
[38] |
YUE X, ZHANG J, DONG Y, et al. Reversible Li plating on graphite anodes through electrolyte engineering for fast-charging batteries[J]. Angewandte Chemie International Edition, 2023, 62(19):e202302285.
|
[39] |
陈旭海, 罗景生, 陈永福, 等. 基于Ansys的磷酸铁锂储能电池系统热分析及优化[J]. 电器与能效管理技术, 2020(10):41-46.
|
[40] |
KIM G H, SMITH K, LEE K J, et al. Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales[J]. Journal of the Electrochemical Society, 2011, 158(8):A955-A969.
|
[41] |
CHEN Y H, WANG C W, LIU G, et al. Selection of conductive additives in Li-ion battery cathodes:A numerical study[J]. Journal of The Electrochemical Society, 2007, 154(10):A978-A986.
|
[42] |
XU X M, HE R. Review on the heat dissipation performance of battery pack with different structures and operation conditions[J]. Renewable and Sustainable Energy Reviews, 2014,29:301-315.
|
[43] |
王莉, 谢乐琼, 张干, 等. 锂离子电池一致性筛选研究进展[J]. 储能科学与技术, 2018, 7(2):194-202.
doi: 10.12028/j.issn.2095-4239.2017.0169
|
[44] |
吴晓刚, 崔智昊, 孙一钊, 等. 电动汽车大功率充电过程动力电池充电策略与热管理技术综述[J]. 储能科学与技术, 2021, 10(6):2218-2234.
doi: 10.19799/j.cnki.2095-4239.2021.0267
|
[45] |
SABBAH R, KIZILEL R, SELMAN J R, et al. Active (air-cooled) vs.passive (phase change material) thermal management of high power lithium-ion packs:Limitation of temperature rise and uniformity of temperature distribution[J]. Journal of Power Sources, 2008, 182(2):630-638.
|
[46] |
AFZAL A, MOHAMMED SAMEE A D, ABDUL RAZAK R K, et al. Thermal management of modern electric vehicle battery systems (MEVBS)[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(4):1271-1285.
|
[47] |
RAO Z, WANG S. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9):4554-4571.
|
[48] |
田钧, 高帅. 基于浸没式技术的纯电动汽车电池包热管理方案解析[J]. 汽车电器, 2023(5):6-8.
|
[49] |
LING Z, WANG F, FANG X, et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Applied Energy, 2015,148:403-409.
|
[50] |
ZHAO R, GU J, LIU J. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries[J]. Journal of Power Sources, 2015,273:1089-1097.
|
[51] |
MAO B, LIU C, YANG K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021,139:110717.
|
[52] |
丁奕, 杨艳, 陈锴, 等. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6):1821-1833.
|
[53] |
刘昱君, 段强领, 黎可, 等. 多种灭火剂扑救大容量锂离子电池火灾的实验研究[J]. 储能科学与技术, 2018, 7(6):1105-1112.
doi: 10.12028/j.issn.2095-4239.2018.0188
|