电器与能效管理技术 ›› 2024, Vol. 0 ›› Issue (2): 56-65.doi: 10.16628/j.cnki.2095-8188.2024.02.010

• 检测与试验 • 上一篇    下一篇

基于卷积原型网络的断路器故障诊断方法研究

沙浩源, 刘佩, 王之赫, 孙毅, 赵贺, 邓凯, 朱超   

  1. 国网江苏省电力有限公司 超高压分公司, 江苏 南京 211102
  • 收稿日期:2023-09-15 出版日期:2024-02-28 发布日期:2024-03-28
  • 作者简介:沙浩源(1990—),男,工程师,博士,主要从事电力系统大数据分析及继电保护研究。|刘佩(1989—),男,工程师,主要从事电力系统大数据分析及开关类设备状态研究。|王之赫(1989—),男,工程师,主要从事电力系统大数据分析及特高压一次设备状态研究。
  • 基金资助:
    国家重点研究计划项目(2018YFB1500800);江苏省重点研发计划(BE2020027);江苏省国际科技合作项目(BZ2021012)

Research on Fault Diagnosis Method of High Voltage Circuit Breaker Based on Convolution Prototype Network

SHA Haoyuan, LIU Pei, WANG Zhihe, SUN Yi, ZHAO He, DENG Kai, ZHU Chao   

  1. EHV Branch Company, State Grid Jiangsu Electric Power Co., Ltd., Nanjing 211102,China
  • Received:2023-09-15 Online:2024-02-28 Published:2024-03-28

摘要:

针对现有断路器故障诊断研究中无法有效区分未知类样本的问题,提出了一种基于卷积原型网络的断路器故障诊断算法。首先,以聚类的思想构建分类函数,通过各类故障的原型样本点特征空间距离约束来划分概率空间,实现对包含未知类故障样本集的识别。同时,以原型样本点为聚类中心,将样本特征的空间距离作为卷积特征自提取网络的优化目标,以有效改善样本特征的类内聚集性及类间的分散性,提高模型对样本的分类准确度。最后,基于110 kV断路器现场实验数据,对所提算法的有效性和准确性进行验证。结果表明,所提算法能够准确区分测试样本中的未知故障,并有效改善了故障样本特征的空间分布。

关键词: 断路器, 故障诊断, 原型卷积网络, 聚类, 未知类, 智能运维

Abstract:

Aiming at the problem that unknown samples cannot be effectively distinguished in existing circuit breaker fault diagnosis research, a circuit breaker fault diagnosis algorithm based on the convolutional prototype network is proposed. Firstly, the classification function is constructed using the clustering approach and the probability space is divided based on the distance constraint of the prototype sample point feature space for various types of faults, which can achieve the recognition of a sample set containing unknown fault classes. At the same time, with each type of prototype sample points as the cluster center, the sample feature space distance is used as the optimization target of the convolution feature self-extraction network, which can effectively improve the intra-class aggregation and inter-class dispersion of fault sample features and improve the classification accuracy of the model. Finally, the validity and accuracy of the proposed algorithm are verified based on the field experiment data of 110 kV circuit breaker. The results show that the proposed algorithm can accurately distinguish the unknown faults in the test samples and effectively improve the spatial distribution of fault sample features.

Key words: circuit breaker, fault diagnosis, prototype convolutional network, clustering, unknown class, intelligent maintenance

中图分类号: