电器与能效管理技术 ›› 2022, Vol. 0 ›› Issue (9): 74-79.doi: 10.16628/j.cnki.2095-8188.2022.09.011

• 预测技术 • 上一篇    下一篇

基于LSTM和PSO联合优化的微电网短期负荷预测方法

许建, 王家华, 陈玉峰   

  1. 北京四方继保自动化股份有限公司, 北京 100085
  • 收稿日期:2022-03-25 出版日期:2022-09-30 发布日期:2022-10-20
  • 作者简介:许 建(1981—),男,工程师,主要从事配电网与微电网保护控制研究。|王家华(1978—),男,高级工程师,主要从事配电网与微电网保护控制研究。|陈玉峰(1988—),男,工程师,主要从事分布式电源与微电网协调控制研究。

Short Term Load Prediction Method for Micro Grid Based on Joint Optimization of LSTM and PSO

XU Jian, WANG Jiahua, CHEN Yufeng   

  1. Beijing Sifang Automation Co.,Ltd.,Beijing 100085, China
  • Received:2022-03-25 Online:2022-09-30 Published:2022-10-20

摘要:

针对园区级微电网负荷规模较小,波动性和不可预测性较强,受天气、体感参数等可测量和预知的因素较小,而受到随机启动负荷的影响较大,传统电力系统负荷预测误差较大,提出了一种基于长短时记忆(LSTM)日间预测和粒子群算法(PSO)日内修正的负荷预测方法。通过利用LSTM学习模型的特征提取能力和时序相关性学习能力得到日间预测负荷曲线,为了进一步提升预测精确度,采用PSO在待预测日当日对负荷曲线进行二次修正。算例表明,所提策略具有较高的预测精度准确率,可以应用于微电网短期负荷预测实践。

关键词: 微电网, 短期负荷预测, LSTM, PSO

Abstract:

Aiming at the small scale,strong volatility and unpredictability of the park-level micro-grid load,less measurable and predictable factors like weather and motion sensing parameters,and greater impact of random starting load,the load prediction error of the traditional power system is large,a load prediction method based on long and short-term memory (LSTM) daytime prediction and particle swarm optimization algorithm (PSO) intra-day modification is proposed.The feature extraction ability and time series correlation learning ability of LSTM learning model is used to obtain the daytime forecast load curve.In order to further improve the prediction accuracy,PSO is used to revise the load curve twice on the date to be predicted.The example shows that the proposed method has high accuracy and can be applied to the short term load prediction of micro grid.

Key words: micro grid, short-term load forecasting, long and short term memory (LSTM), particle swarm optimization (PSO)

中图分类号: