[1] |
张怀宇, 徐超然, 黄志龙, 等. 考虑光伏发电不确定性的源-网-荷-储协调调度方法[J]. 电器与能效管理技术, 2021(5):86-92.
|
[2] |
倪爽, 崔承刚, 郑庆荣, 等. 基于多风电相关性场景生成法的配电网随机多目标无功优化[J]. 浙江电力, 2020, 39(11):103-111.
|
[3] |
刘颖明, 陈亮, 王晓东, 等. 混合储能参与风电集群一次调频的容量配置优化[J]. 电器与能效管理技术, 2020(10):55-63.
|
[4] |
吴仁光, 郑立, 李凯鹏, 等. 面向综合能源配电网的储能系统优化配置方法[J]. 广东电力, 2020, 33(3):42-50.
|
[5] |
孔昱凯, 温步瀛, 朱振山, 等. 含储能的孤岛微电网日前-日内协调优化运行[J]. 电器与能效管理技术, 2021(2):65-74.
|
[6] |
徐虹卿, 张宇献, 邢作霞. 考虑风电不确定性的风电储能混合系统协调优化计算[J]. 电器与能效管理技术, 2019(9):53-59,70.
|
[7] |
栾德利, 张宇献. 计及可靠性的风光储混合系统优化配置策略[J]. 电器与能效管理技术, 2020(11):95-102.
|
[8] |
沈乃君, 高杰, 何新. 一种基于混合储能系统的风光功率平滑控制策略研究[J]. 电器与能效管理技术, 2019(1):62-68.
|
[9] |
林崇, 陈佳桥, 王金友, 等. 新型混合储能功率变换器及控制策略研究[J]. 电器与能效管理技术, 2019(20):26-31.
|
[10] |
刘文康, 谷志锋, 葛孟超, 等. 混合储能系统反演自适应变结构控制[J]. 电力电容器与无功补偿, 2020, 41(1):215-220.
|
[11] |
KOLLIMALLA S K, MISHRA M K, NARASAMMA N L. Design and analysis of novel control strategy for battery and supercapacitor storage system[J]. IEEE Transactions on Sustainable Energy, 2014, 5(4):1137-1144.
doi: 10.1109/TSTE.2014.2336896
|
[12] |
ZHU F Q, YANG Z P, XIA H, et al. Hierarchical control and full-range dynamic performance optimization of the supercapacitor energy storage system in urban railway[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8):6646-6656.
doi: 10.1109/TIE.2017.2772174
|
[13] |
王坦坦, 孙树敏, 王楠, 等. 基于混合储能的微电网控制策略研究[J]. 现代电子技术, 2020, 43(21):119-121,126.
|
[14] |
DUAN J J, YI Z H, SHI D, et al. Reinforcement-learning-based optimal control of hybrid energy storage systems in hybrid AC-DC microgrids[J]. IEEE Transactions on Industrial Informatics, 2019, 15(9):5355-5364.
doi: 10.1109/TII.9424
|
[15] |
TANG Y H, HU W H, XIAO J, et al. Reinforcement learning based efficiency optimization scheme for the DAB DC-DC converter with triple-phase-shift modulation[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8):7350-7361.
doi: 10.1109/TIE.2020.3007113
|
[16] |
ZHOU L, SWAIN A, UKIL A. Reinforcement Learning controllers for enhancement of low voltage ride through capability in hybrid power systems[J]. IEEE Transactions on Industrial Informatics, 2020, 16(8):5023-5031.
doi: 10.1109/TII.9424
|
[17] |
王之伟, 陆晓, 刁瑞盛, 等. 基于深度强化学习的电网自主控制与决策技术[J]. 电力工程技术, 2020, 39(6):34-43.
|
[18] |
WU S, LI G Q, DENG L, et al. L1-Norm batch normalization for efficient training of deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(7):2043-2051.
doi: 10.1109/TNNLS.2018.2876179
|
[19] |
AWATE Y P. Policy-Gradient based Actor-Critic algorithms [C]//WRI Global Congress on Intelligent Systems, 2009:505-509.
|
[20] |
SUTTON R S, MCALLESTER D A, SINGH S P, et al. Policy gradient methods for reinforcement learning with function approximation [C]//Neural Information Processing Systems, 1999:1057-1063.
|
[21] |
LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning [C]//International Conference on Learning Representations, 2016:219-225.
|
[22] |
GHEISARNEJAD M, FARSIZADEH H, KHOOBAN M H. A novel nonlinear deep reinforcement learning controller for DC-DC power Buck converters[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8):6849-6858.
doi: 10.1109/TIE.2020.3005071
|
[23] |
SUTTON R S, BARTO A G. Reinforcement learning:An introduction [M]. Cambridge: MIT Press, 1998.
|