电器与能效管理技术 ›› 2021, Vol. 0 ›› Issue (11): 42-49.doi: 10.16628/j.cnki.2095-8188.2021.11.007

• 控制技术 • 上一篇    下一篇

基于深度强化学习的混合储能系统最优控制

李红1, 朱立位1, 郭朝辉2   

  1. 1.国网江苏省电力有限公司 连云港供电分公司, 江苏 连云港 222004
    2.南京工程学院 电力工程学院, 江苏 南京 211167
  • 收稿日期:2021-07-21 出版日期:2021-11-30 发布日期:2022-01-25
  • 作者简介:李 红(1980—),女,高级工程师,主要从事智能电网规划与运行控制研究。|朱立位(1981—),男,高级工程师,主要从事储能规划与运行控制研究。|郭朝辉(1993—),男,硕士研究生,研究方向为人工智能在电力电子控制中的应用。
  • 基金资助:
    * 国网江苏省电力有限公司科技项目(J2019112);国家自然科学基金项目(51707089)

Optimal Control of Hybrid Energy Storage System Based on Deep Reinforcement Learning

LI Hong1, ZHU Liwei1, GUO Zhaohui2   

  1. 1. Lianyungang Power Supply Company,State Grid Jiangsu Electric Power Co.,Ltd.,Lianyungang 222004, China
    2. School of Electric Power Engineering,Nanjing Institute of Technology, Nanjing 211167, China
  • Received:2021-07-21 Online:2021-11-30 Published:2022-01-25

摘要:

直流微电网孤岛运行模式下,当光伏出力或负荷突变时,直流母线电压产生较大波动。为稳定直流电压,混合储能系统进行快速充放电,传统比例-积分(PI)控制难以实现较好的控制效果。因此,提出一种基于深度强化学习的最优控制方法。首先分析直流电压控制非线性特性;给出基于输入/输出数据的深度强化学习算法框架与学习流程;设计状态空间、动作空间、奖励函数与神经网络,实现混合储能系统DC/DC换流器的最优控制;最后,在直流微电网系统中进行仿真,相比传统PI控制,所提方法能够减小直流母线电压波动,提升系统的稳定性

关键词: 直流微电网, 混合储能系统, 深度强化学习, 最优控制

Abstract:

Under the islanding operation mode of DC micro-grid,when the photovoltaic output or load changes suddenly,the DC bus voltage fluctuates greatly.To stabilize the DC voltage,hybrid energy storage system charges and discharges quickly,but traditional proportional integral (PI) control is difficult to achieve good control effect.Therefore,an optimal control method based on deep reinforcement learning is proposed.Firstly,the nonlinear characteristics of DC voltage control are analyzed; the deep reinforcement learning algorithm framework and learning process based on input/output data are given.The state space,action space,reward function and neural network are designed to realize the optimal control of DC/DC converter in hybrid energy storage system.Finally,the simulation in DC micro-grid system shows that the proposed method can reduce the DC bus voltage fluctuation and improve the stability of the system compared with PI control.

Key words: DC micro-grid, hybrid energy storage system, deep reinforcement learning, optimal control

中图分类号: