电器与能效管理技术 ›› 2022, Vol. 0 ›› Issue (9): 66-73.doi: 10.16628/j.cnki.2095-8188.2022.09.010

• 预测技术 • 上一篇    下一篇

基于二次混合模态分解和LSTM-MFO算法的短期负荷预测

黄晨宏1, 李昆鹏2, 郑真1, 马小丽1, 颜华敏1, 田书欣2   

  1. 1.国网上海市电力公司 青浦供电公司, 上海 201700
    2.上海电力大学 电气工程学院, 上海 200090
  • 收稿日期:2022-05-26 出版日期:2022-09-30 发布日期:2022-10-20
  • 作者简介:黄晨宏(1969—),男,高级工程师,主要从事电力管理工作。|李昆鹏(1994—),男,硕士研究生,研究方向为配电网负荷预测。|郑 真(1990—),男,高级工程师,主要从事电力项目管理与创新实践工作。
  • 基金资助:
    国网上海市电力公司技术项目(52093421N002)

Short-Term Load Forecasting Method Based on Quadratic Mixed Mode Decomposition and LSTM-MFO Algorithm

HUANG Chenhong1, LI Kunpeng2, ZHENG Zhen1, MA Xiaoli1, YAN Huamin1, TIAN Shuxin2   

  1. 1. State Grid Shanghai Qingpu Electric Power Supply Company, Shanghai 201700, China
    2. School of Electrical Engineering,Shanghai University of Electric Power, Shanghai 200090, China
  • Received:2022-05-26 Online:2022-09-30 Published:2022-10-20

摘要:

高精度短期负荷预测是配电网运行态势感知的基础。为了充分挖掘电力负荷中的复杂不确定信息,提出了一种融合二次混合模态分解和基于飞蛾扑火优化(MFO)算法的长短时记忆神经网络(LSTM)的短期负荷预测方法。首先,将集成经验模态分解(EEMD)和变分模态分解(VMD)相结合,提取负荷中相对稳定的子序列及趋势序列,以降低高频序列中无序不确定性对预测精度的影响;然后,引入基于MFO参数寻优的LSTM预测模型,进而利用LSTM-MFO算法实现对含各子序列短期负荷变化趋势的精确预测。最后,采用某实际配电网节点负荷序列,验证了所提方法的泛化能力和预测精度。

关键词: 短期负荷预测, 长短时记忆神经网络, 飞蛾扑火优化算法, 混合模态分解, 不确定性

Abstract:

Short-term load forecasting with high accuracy is the foundation for situation awareness of distribution network.To mine the complex uncertainty information in power load data sequence,a novel load forecasting method is proposed based on quadratic mixed mode decomposition and long short-term memory (LSTM) neural network with moth to fire optimization (MFO) algorithm seeking optimum parameters.Firstly,combined with the integrated empirical mode decomposition (EEMD) and variational mode decomposition (VMD),the quadratic mixed mode decomposition model is built to deal with load data sequence,which can extract relatively stable subsequences in power load data and decrease the influence of disordered uncertainty components in high frequency sequences on load prediction accuracy.Secondly,LSTM optimized by MFO algorithm is put forward to accurately predict short-term load trend including decomposition subsequences.Finally,the generalization ability and the prediction accuracy of the model are verified by the prediction on the basis of load data at node in an actual distribution network.

Key words: short-term load forecasting, long short-term memory (LSTM), moth to fire optimization (MFO), mixed mode decomposition, uncertainty

中图分类号: