电器与能效管理技术 ›› 2022, Vol. 0 ›› Issue (9): 51-57.doi: 10.16628/j.cnki.2095-8188.2022.09.008

• 策略研究与分析 • 上一篇    下一篇

计及天气因素影响的V2G有序充放电控制策略研究

牛高远1,2, 孟凡提1,2, 陈天锦1,2, 刘苗苗1,2, 边慧萍1,2, 贾甜1,2   

  1. 1.许继电源有限公司, 河南 许昌 461000
    2.河南省智能充电技术重点实验室, 河南 许昌 461000
  • 收稿日期:2022-07-08 出版日期:2022-09-30 发布日期:2022-10-20
  • 作者简介:牛高远(1985—),男,工程师,主要从事电动汽车充换电技术、新能源并网运行优化等研究。|孟凡提(1983—),男,工程师,主要从事电力电子技术、电动汽车充换电技术等研究。|陈天锦(1973—),男,教授级高级工程师,主要从事电力电子技术、电动汽车充换电技术等研究。
  • 基金资助:
    国家电网公司总部科技项目(5418-202155247A-0-0-00)

Research on Control Strategy of V2G Orderly Charging and Discharge Considering Influence of Weather Factors

NIU Gaoyuan1,2, MENG Fanti1,2, CHEN Tianjin1,2, LIU Miaomiao1,2, BIAN Huiping1,2, JIA Tian1,2   

  1. 1. Xuji Power Co.,Ltd.,Xuchang 461000, China
    2. Henan Key Laboratory of Intelligent Charging Technology,XuChang 461000, China
  • Received:2022-07-08 Online:2022-09-30 Published:2022-10-20

摘要:

为了解决V2G充放电系统参与电网互动,但缺乏有序管理的问题,提出一种计及天气因素影响的有序充放电控制策略。所提策略以天气数据的欧式距离为依据,改进了BP神经网络的训练样本选择方法,训练后的网络模型,能可靠预测充放电机的有功或无功功率调节值。MATLAB的仿真结果表明,控制策略在充电或放电模式下,都能及时进行有功或无功支撑。最后,基于该控制策略的60 kW充放电机,在虚拟电厂中的示范应用数据证明,充放电机能够结合当前电网状态,达到功率调度的预期目标,可有效避免电动汽车充放电能量的无序流动,增强电网应对指标异常的能力。

关键词: 天气因素, V2G, 神经网络, 预测, 功率调节

Abstract:

In order to solve the problem that V2G charging and discharging system participates in the interaction of power grid,but lacks orderly management,an orderly charging and discharge control strategy considering the weather factors is proposed.The strategy improves the training sample selection method of BP neural network based on the Euclidean distance of weather data.Then,the trained network model can reliably predict the active or reactive power regulation value of the charging and discharging motor.The simulation results in MATLAB show that the strategy can support the active or reactive power in time under the mode of charging or discharging.Finally,one V2G prototype with power of 60 kW is demonstrated and applied in virtual power plant.The measured data shows that the prototype can achieve the expected goal of power dispatching by combinating the current state of power grid.The proposed strategy can effectively avoid the disorderly flow of charging and discharging energy,and enhance the ability of the power grid to deal with abnormal indicators.

Key words: weather factors, vehicle to grid (V2G), neural network, predicte, power regulation

中图分类号: