| [1] |
栾德利, 张宇献. 计及可靠性的风光储混合系统优化配置策略[J]. 电器与能效管理技术, 2020(11):95-102.
|
| [2] |
魏晓钢, 李兆泽, 张继红, 等. 考虑多元柔性负荷的虚拟电厂分层优化调度[J]. 电器与能效管理技术, 2024(11):73-81.
|
| [3] |
邢小文, 牟树君, 范玉建, 等. 大规模风/光互补制储氢关键技术研究现状与趋势[J]. 电器与能效管理技术, 2024(4):1-12.
|
| [4] |
司杨, 陈来军, 麻林瑞, 等. 考虑氢储能热平衡的风-氢混合系统优化调度方法[J]. 电器与能效管理技术, 2021(11):15-21.
|
| [5] |
IBÁÑEZ-RIOJA A, JÄRVINEN L, PURANEN P, et al. Off-grid solar PV-wind power-battery-water electrolyzer plant:Simultaneous optimization of component capacities and system control[J]. Applied Energy, 2023, 345:121277.
doi: 10.1016/j.apenergy.2023.121277
|
| [6] |
赵宇洋, 赵钰欢, 郭英军, 等. 离网型风光氢储系统容量配置与控制优化[J]. 太阳能学报, 2024, 45(7):50-59.
|
| [7] |
李渝, 张红, 崔晓波, 等. 短时-中长期协调的电-氢混合储能容量优化规划[J]. 电器与能效管理技术, 2022(5):35-40.
|
| [8] |
RENAUDINEAU H, VERGARA-ROSALES N, LLOR A, et al. Green hydrogen production from off-grid photovoltaic:An assessment on optimal sizing[J]. Renewable Energy, 2025, 246:122794.
doi: 10.1016/j.renene.2025.122794
|
| [9] |
张潇桐, 戈阳阳, 姚红雨, 等. 基于粒子群算法的制氢电解槽运行控制策略[J]. 热力发电, 2023, 52(11):115-122.
|
| [10] |
滕越, 赵骞, 张红, 等. 新能源-质子交换膜电解槽电制氢容量双层规划模型研究[J]. 热力发电, 2021, 50(11):37-46.
|
| [11] |
GARCIA-TORRES F, BORDONS C. Optimal economical schedule of hydrogen-based microgrids with hybrid storage using model predictive control[J]. IEEE Transactions on Industrial Electronics, 2015, 62(8):5195-5207.
doi: 10.1109/TIE.2015.2412524
|
| [12] |
魏繁荣, 随权, 林湘宁, 等. 考虑制氢设备效率特性的煤风氢能源网调度优化策略[J]. 中国电机工程学报, 2018, 38(5):1428-1439.
|
| [13] |
GARCÍA-TRIVIÑO P, FERNÁNDEZ-RAMÍREZ L M, GIL-MENA A, et al. Optimized operation combining costs,efficiency and lifetime of a hybrid renewable energy system with energy storage by battery and hydrogen in grid-connected applications[J]. International Journal of Hydrogen Energy, 2016, 41(48):23132-23144.
doi: 10.1016/j.ijhydene.2016.09.140
|
| [14] |
郑博, 白章, 袁宇, 等. 多类型电解协同的风光互补制氢系统与容量优化[J]. 中国电机工程学报, 2022, 42(23):8486-8496.
|
| [15] |
牛萌, 洪振鹏, 李蓓, 等. 考虑制氢效率提升的风电制氢系统优化控制策略[J]. 太阳能学报, 2023, 44(9):366-376.
doi: 10.19912/j.0254-0096.tynxb.2022-0751
|
| [16] |
NASSER M, MEGAHED T, OOKAWARA S, et al. Techno-economic assessment of clean hydrogen production and storage using hybrid renewable energy system of PV/wind under different climatic conditions[J]. Sustainable Energy Technologies and Assessments, 2022, 52:102195.
doi: 10.1016/j.seta.2022.102195
|
| [17] |
IBÁÑEZ-RIOJA A, PURANEN P, JÄRVINEN L, et al. Simulation methodology for an off-grid solar-battery-water electrolyzer plant:Simultaneous optimization of component capacities and system control[J]. Applied Energy, 2022, 307:118157.
doi: 10.1016/j.apenergy.2021.118157
|
| [18] |
张怀宇, 徐超然, 黄志龙, 等. 考虑光伏发电不确定性的源-网-荷-储协调调度方法[J]. 电器与能效管理技术, 2021(5):86-92.
|
| [19] |
GU X, YING Z, ZHENG X, et al. Photovoltaic-based energy system coupled with energy storage for all-day stable PEM electrolytic hydrogen production[J]. Renewable Energy, 2023, 209:53-62.
doi: 10.1016/j.renene.2023.03.135
|
| [20] |
URSÚA A, SANCHIS P. Static-dynamic modelling of the electrical behaviour of a commercial advanced alkaline water electrolyser[J]. International Journal of Hydrogen Energy, 2012, 37(24):18598-18614.
doi: 10.1016/j.ijhydene.2012.09.125
|
| [21] |
IRIBARREN Á, ELIZONDO D, BARRIOS E, et al. Dynamic modeling of a pressurized alkaline water electrolyzer:A multiphysics approach[J]. IEEE Transactions on Industry Applications, 2023, 59(3):3741-3753.
doi: 10.1109/TIA.2023.3247405
|
| [22] |
上海环境能源交易所. 中国氢价指数体系价格信息[EB/OL].(2025-03-17)[2025-03-30]. https://www.cneeex.com/dtfw/lsjr/lszq/zgqjzs/zgqjzstxjgfb/.
|
| [23] |
NASA Langley Research Center POWER Project. POWER data access viewer[EB/OL].(2024-12-31)[2025-03-28]. https://power.larc.nasa.gov/data-access-viewer.
|