[1] |
刘倩倩, 赵言本, 吕超. 磷酸铁锂电池大倍率充放电模型仿真研究[J]. 电器与能效管理技术, 2020(5):57-61.
|
[2] |
殷光治, 郑漳华, 王歆, 等. 能源安全视角下的储能技术发展路径分析[J]. 电器与能效管理技术, 2022(5):1-7.
|
[3] |
程俊涵, 王书礼, 蔡志远. 基于AE-LSTM的锂电池剩余使用寿命预测[J]. 电器与能效管理技术, 2023(9):69-75.
|
[4] |
李晓华. 基于IPSO-LIESN网络的锂电池剩余使用寿命预测[J]. 电器与能效管理技术, 2023(5):51-58.
|
[5] |
WANG Z L, LIU Y L, WANG F, et al. Capacity and remaining useful life prediction for lithium-ion batteries based on sequence decomposition and a deep-learning network[J]. Energy Storage, 2023,72:1-13.
|
[6] |
LI X J, YU D. The development of machine learning-based remaining useful life prediction for lithium-ion batteries[J]. Energy Chemistry, 2023,82:103-121.
|
[7] |
GUO X F, WANG K Z, YAO S, et al. RUL prediction of lithium ion battery based on CEEMDAN-CNN BiLSTM model[J]. Energy Reports, 2023, 9(10):1299-1306.
|
[8] |
SONG K, YUE X G, HU D, et al. Remaining life prediction of lithium-ion batteries based on health management:A review[J]. Energy Storage, 2023,57:1-17.
|
[9] |
PANG X Q, HUANG R, WEN J, et al. A lithium-ion battery rul prediction method considering the capacity regeneration phenomenon[J]. Energies, 2019, 12(11):1-14.
|
[10] |
陆小鹏, 吴炬卓, 牛海清, 等. 基于改进小波变换阈值估计法去除电缆绝缘局部放电信号白噪声[J]. 电器与能效管理技术, 2021(3):24-28.
|
[11] |
CHEN Z W, SHI N, JI Y F, et al. Lithium-ion batteries remaining useful life prediction based on BLS-RVM[J]. Energy, 2021,234:1-13.
|
[12] |
杨秀, 胡钟毓, 田英杰, 等. 基于EMD-Stacking-MLR的台区配变短期负荷预测方法[J]. 电器与能效管理技术, 2022(2):53-62.
|
[13] |
黄浚哲, 印宇涵, 汤明轩, 等. 基于CEEMDAN与改进LSTM的短期光伏出力预测[J]. 电器与能效管理技术, 2023(10):36-43.
|
[14] |
陈翔, 夏飞. 基于CEEMD-AKF的锂电池剩余使用寿命预测方法[J]. 哈尔滨理工大学学报, 2023, 28(3):28-36.
|
[15] |
刘树鑫, 刘学识, 李静, 等. 基于SSA-ELM的直流串联故障电弧检测方法研究[J]. 电器与能效管理技术, 2022(10):65-73.
|
[16] |
徐达, 王海瑞, 朱贵富. 基于VMD 和优化CNN-GRU的锂电池剩余使用寿命间接预测[J]. 现代电子技术, 2024, 47(2):133-139.
|
[17] |
HAN C Y, YUAN H M. Sliding window pooling extreme learning machine based capacity prediction of lithium-ion batteries[J]. Physics, 2023,2433:1-6.
|
[18] |
ANSARI S, HUSSAIN A, AYOB A, et al. Optimized data-driven approach for remaining useful life prediction of lithium-ion batteries based on sliding window and systematic sampling[J]. Energy Storage, 2023,73:1-22.
|
[19] |
王胜研, 王娟娟. 基于VMD-FE-SSA-SVR模型的超短期风速预测[J]. 电器与能效管理技术, 2024(4):57-64.
|
[20] |
WANG Z Q, LIU N, GUO Y M. Adaptive sliding window LSTM NN based RUL prediction for lithium-ion batteries integrating LTSA feature reconstruction[J]. Neurocomputing, 2021,466:178-189.
|
[21] |
SAEED H A, WANG H, PENG M J. Online fault monitoring based on deep neural network & sliding window technique[J]. Progress in Nuclear Energy, 2020,121:1-10.
|
[22] |
许建, 王家华, 陈玉峰. 基于LSTM和PSO联合优化的微电网短期负荷预测方法[J]. 电器与能效管理技术, 2022(9):74-79.
|
[23] |
李亚茹, 张宇来, 王佳晨. 面向超参数估计的贝叶斯优化方法综述[J]. 计算机科学, 2022, 49(增刊1):86-92.
|
[24] |
谢鸿凯, 鲍光海. 基于参数优化变分模态分解的交流继电器交流声故障特征提取[J]. 电器与能效管理技术, 2022(6):51-56.
|