电器与能效管理技术 ›› 2020, Vol. 594 ›› Issue (9): 99-103.doi: 10.16628/j.cnki.2095-8188.2020.09.018

• 配网技术与系统 • 上一篇    

基于一维卷积神经网络的配电网高阻接地故障识别

刘炳南, 黄沂平, 方国标   

  1. 国网福建省电力有限公司长乐供电公司, 福建 福州 350202
  • 收稿日期:2020-03-09 出版日期:2020-09-30 发布日期:2020-10-18
  • 作者简介:刘炳南(1993—),男,主要从事配电网及其自动化技术研究。|黄沂平(1982—),男,高级工程师,主要从事电力系统运维管理。|方国标(1986—),男,高级工程师,主要从事配电网及其自动化技术研究。

High Impedance Fault Ide.pngication in Distribution Network Based on One-Dimensional Convolution Neural Network

LIU Bingnan, HUANG Yiping, FANG Guobiao   

  1. Changle Electric Power Supply Company,State Grid Fujian Electric Company,Fuzhou 350202, China
  • Received:2020-03-09 Online:2020-09-30 Published:2020-10-18

摘要:

配电网直接与用户连接,其稳定性与整个电力系统对用户侧输送电能的能力息息相关。配电网运行环境复杂、覆盖广泛,若运行线路掉落接触到树木、草地时易发生高阻接地故障。此时,故障点阻抗达到几百欧甚至几千欧,电压、电流幅值变化微弱,故障难以被检测到。如果故障无法及时排除,故障点间歇性电弧将造成不可估量的破坏。利用希尔伯特-黄变换(HHT)带通滤波进行特征量提取,构造时频能量矩阵,采用一维卷积神经网络(1D-CNN)构造分类器进行故障分类。通过仿真模型进行验证和适应性分析,结果表明算法准确率高且适应性良好。

关键词: 配电网, 高阻接地故障, 一维卷积神经网络(1D-CNN), 故障分类

Abstract:

The power distribution network is directly connected with the user.Its stability is closely related to the power system’s ability to deliver power to the user side.The operation environment of distribution network is complex and extensive,and high impedance fault (HIF) occurs when the operation line falls into contact with trees,grass and other conditions.At this point,the impedance of the fault point reaches several hundred or even several thousand ohms,and the amplitude of voltage and current changes weakly,so the fault is difficult to be detected.If the fault can’t be eliminated in time,the intermittent arc at fault point will cause immeasurable damage.In this paper,the Hilbert-Huang Transform (HHT) band-pass filter is used to extract the feature quantity,to form the time-frequency energy matrix,one-dimensional convolutional neural network (1D-CNN) is used to construct classifier for fault classification.The simulation model is verified and the adaptability is analyzed.The results show that the algorithm has high accuracy and good adaptability.

Key words: distribution networks, high impedance fault, one-dimensional convolutional neural network (1D-CNN), fault classificatio

中图分类号: