电器与能效管理技术 ›› 2022, Vol. 0 ›› Issue (3): 15-22.doi: 10.16628/j.cnki.2095-8188.2022.03.003

• 研究与分析 • 上一篇    下一篇

基于数据挖掘的电动汽车充电设施充电安全故障特性分析

许笑, 高翔, 李光熹, 徐纬河   

  1. 国网连云港供电公司, 江苏 连云港 222200
  • 收稿日期:2021-12-21 出版日期:2022-03-30 发布日期:2022-04-28
  • 作者简介:许笑(1991—),男,工程师,主要从事电网调度、配网运检、电动汽车及充电桩等方面的研究。|高翔(1986—),男,工程师,主要从事电力系统运行分析、智能用电技术、电能质量控制等方面的研究。|李光熹(1989—),男,主要从事配网调控、源网荷储等方面的研究。

Analysis on Charging Safety Fault Characteristics of Electric Vehicle Charging Facilities Based on Data Mining

XU Xiao, GAO Xiang, LI Guangxi, XU Weihe   

  1. State Grid Lianyungang Power Supply Company, Lianyungang 222200, China
  • Received:2021-12-21 Online:2022-03-30 Published:2022-04-28

摘要:

针对充电桩故障率居高不下问题,以直流充电设施为研究对象,分析其工作原理及运行安全影响因素,基于数据挖掘的主成分分析(PCA)算法对充电设施运行数据如电压、电流、温度等进行特征挖掘,建立顶部事件为仪器故障、机械故障、通信故障的充电设施一体化故障树,分析各层故障源和具体故障类型之间的内在关系。利用2021年3月~4月江苏省各充电站充电设施运行数据,验证了所提数据挖掘方法对充电设施故障特性分析的实用性。

关键词: 充电设施, 数据挖掘, 主成分分析, 故障树

Abstract:

Aiming at the problem of high failure rate of charging pile,taking DC charging facilities as the research object,the working principle and influencing factors of operation safety are analyzed. Based on the principal component analysis (PCA) algorithm of data mining,the characteristics of charging facilities operation data such as voltage,current and temperature are mined.The integrated fault tree of charging facilities is established,whose top events are instrument failure,mechanical failure and communication fault.And the internal relationship between fault sources of each layer and specific fault types are analyzed.Using the operation data of charging facilities in Jiangsu Province from March to April 2021,the practicability of the proposed data mining method for the analysis of fault characteristics of charging facilities is verified.

Key words: charging facilities, data mining, principal component analysis, fault tree

中图分类号: