[1] |
徐鑫森. 低压直流系统保护若干问题的研究[D]. 杭州: 浙江大学, 2023.
|
[2] |
胡宏宇. 用户侧低压直流配电系统的过流保护技术[J]. 电器与能效管理技术, 2019(3):64-67.
|
[3] |
朱海. 基于鲸鱼优化算法改进随机森林的电弧故障检测方法[J]. 电器与能效管理技术, 2024(2):21-27,55.
|
[4] |
高汉林, 许峰, 张涵. 光伏系统直流故障电弧特性与检测装置研究[J]. 电器与能效管理技术, 2022(11):46-53.
|
[5] |
唐圣学, 王彦丰, 乔乃珍. 光伏发电系统直流串联故障电弧检测方法研究[J]. 太阳能学报, 2023, 44(11):31-39.
doi: 10.19912/j.0254-0096.tynxb.2022-1131
|
[6] |
张瑶佳, 王莉, 尹振东, 等. 基于HHT的航空直流串行电弧特征提取方法[J]. 航空学报, 2019, 40(1):259-271.
|
[7] |
EMRANI A, POURHOMAYOUN M. Applying machine learning techniques to recognize arc in vehicle 48 electrical systems[C]// 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), 2017:1-4.
|
[8] |
XIA K, ZHANG Z, LIU B, et al. Data-enhanced machine recognition model of DC serial arc in electric vehicle power system[J]. IET Power Electronics, 2020, 13(19):4677-4684.
|
[9] |
LIU S, ZHANG J, LI X, et al. Research on fault identification method of series arc in electric vehicle charging system based on machine learning[C]// 2023 8th Asia Conference on Power and Electrical Engineering (ACPEE), 2023:1628-1632.
|
[10] |
郭琳, 柯希彪, 汤引生, 等. 新能源汽车电弧故障检测方法及测试系统设计[J]. 绝缘材料, 2018, 51(11):74-79.
|
[11] |
刘艳丽, 王浩, 张帆. 电动汽车串联型电弧故障检测方法[J]. 电子测量与仪器学报, 2023, 37(6):222-231.
|
[12] |
王雨. 电动汽车用直流接触器电弧特性仿真研究[D]. 沈阳: 沈阳工业大学, 2022.
|
[13] |
刘树鑫, 刘学识, 李静, 等. 基于SSA-ELM的直流串联故障电弧检测方法研究[J]. 电器与能效管理技术, 2022(10):65-73.
|
[14] |
SPYKER R, SCHWEICKART D L, HORWATH J C, et al. An evaluation of diagnostic techniques relevant to arcing fault current interrupters for direct current power systems in future aircraft[C]// Proceedings Electrical Insulation Conference and Electrical Manufacturing Expo, 2005:146-150.
|
[15] |
OHTA Y, ISODA H. Arc detecting device and aircraft equipped therewith:US8093904[P].2012-01-10.
|
[16] |
ROZMAN G I, SWENSON J C. SSPC for parallel arc fault detection in DC power system:US8320090[P].2012-11-27.
|
[17] |
MOMOH J A, BUTTON R. Design and analysis of aerospace DC arcing faults using fast fourier transformation and artificial neural network[C]// 2003 IEEE Power Engineering Society General Meeting, 2003:788-793.
|
[18] |
德州仪器. 在太阳能应用中实施电弧检测:实现与新UL1699B标准的符合性[EB/OL].(2012-08-19)[2024-05-13]. https://www.ti.com.cn/cn/lit/wp/zhcy036/zhcy036.pdf?ts=1671246832714.
|
[19] |
华为技术有限公司. 光伏发电系统直流拉弧智能检测(AFCI)技术白皮书[EB/OL].(2020-09-18)[2024-05-13]. https://mp.weixin.qq.com/s/XfxmeOza5G1DOtuEtKA0xA.
|
[20] |
王希彬, 孟庆骁, 戴洪德, 等. 飞机EWIS故障电弧定位技术研究综述[J]. 兵工自动化, 2020, 39(9):31-36.
|
[21] |
吴春华, 胡雅, 李智华, 等. 基于SSTDR的光伏系统直流母线电弧故障在线检测与定位[J]. 中国电机工程学报, 2020, 40(8):2725-2734.
|
[22] |
ZHAO S, YOU G D, HOU X X, et al. A spatial location method for DC series arc faults based on RSSI and Bayesian regularization neural network[J]. IEEE Sensors Journal, 2021, 21(24):27868-27877.
|
[23] |
JING L, XIA L, ZHAO T, et al. An improved arc fault location method of DC distribution system based on EMD-SVD decomposition[J]. Applied Sciences, 2023, 13(16):9132.
|
[24] |
ZHU X, LI S, GUO Y, et al. Novel wavefront detection and fault location method based on Hilbert-Huang transform for long HVDC transmission lines[J]. Electric Power Systems Research, 2022, 211:108213.
|
[25] |
唐海龙, 熊兰, 吴淑牛, 等. 光伏系统直流母线电弧故障的固有频率法测距[J]. 太阳能学报, 2022, 43(9):30-37.
doi: 10.19912/j.0254-0096.tynxb.2021-0255
|
[26] |
熊庆, 刘小军, 郭自清, 等. 基于电流频谱积分差值的光伏系统电弧故障检测和定位[J]. 高电压技术, 2021, 47(5):1625-1633.
|
[27] |
YARAMASU A, CAO Y, LIU G, et al. Aircraft electric system intermittent arc fault detection and location[J]. IEEE Transactions on aerospace and electronic systems, 2015, 51(1):40-51.
|
[28] |
GAJULA K, LE V, YAO X, et al. A probabilistic approach to series arc fault detection and identification in DC microgrids[J]. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2024, 1(5):27-38.
|
[29] |
YAO X, LE V, LEE I. Unknown input observer-based series DC arc fault detection in DC microgrids[J]. IEEE Transactions on Power Electronics, 2022, 4(37):4708-4718.
|
[30] |
RABLA M, TISSERAND E, Schweitzer P, et al. Arc fault analysis and localisation by cross-correlation in 270 V DC[C]// 2013 IEEE 59th Holm Conference on Electrical Contacts, 2013:1-6.
|
[31] |
GAJULA K, HERRERA L. Detection and localization of series arc faults in DC microgrids using Kalman filter[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 9(3):2589-2596.
|
[32] |
LI X, WANG H Q, GUO P F, et al. Series DC arc fault detection and location in wind-solar-storage hybrid system based on variational mode decomposition[J]. Electric Power Systems Research, 2022, 209:107991.
|
[33] |
成达, 张蓬鹤, 熊素琴, 等. 新型低压直流断路器研究综述[J]. 电器与能效管理技术, 2022(11):1-8.
|
[34] |
黄银芳, 蒋顾平. 125 A小型化塑壳断路器短路分断能力提升的研究[J]. 电器与能效管理技术, 2023(11):53-58.
|
[35] |
裘鹏, 黄晓明, 王一, 等. 高压直流断路器在舟山柔直工程中的应用[J]. 高电压技术, 2018, 44(2):403-408.
|
[36] |
李金卜, 李振动, 刘宪辉, 等. 高压直流断路器在张北柔性直流电网中的应用[J]. 东北电力技术, 2024, 45(1):25-29.
|
[37] |
沙新乐, 彭振东, 李博, 等. 混合式断路器自然换流过程分析研究[J]. 船电技术, 2019, 39(2):37-40.
|
[38] |
ZHANG Z, GAO C, CHEN S, et al. Optimization design of interruption characteristics of LVDC hybrid circuit breaker[C]// 2022 IEEE 67th Holm Conference on Electrical Contacts (HLM), 2022:1-8.
|
[39] |
ARMAN H, JURGEN H, BJORN J. Technical assessment of load commutation switch in hybrid HVDC breaker[J]. IEEE Transactions on Power Electronics, 2014, 30(10):5393-5400.
|
[40] |
RACHI M R K, HUSAIN I. Design and development of a hybrid DC circuit breaker for 380 V DC distribution system[C]// 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 2021:1122-1127.
|
[41] |
周万迪, 张蓓, 魏晓光, 等. 一种基于电容可控振荡换流的新型直流断路器[J]. 中国电机工程学报, 2023, 43(3):1123-1132.
|
[42] |
ZHOU Y, FENG Y, SHATALOV N, et al. An ultraefficient DC hybrid circuit breaker architecture based on transient commutation current injection[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(3):2500-2509.
|
[43] |
RAVI L, LIU J, LIU J, et al. Surge current interruption capability of discrete IGBT devices in DC hybrid circuit breakers[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(3):3195-3207.
|
[44] |
曾嵘, 赵彪, 余占清, 等. IGCT在直流电网中的应用展望[J]. 中国电机工程学报, 2018, 38(15):4307-4317,4631.
|
[45] |
ZHAO X, LIU W, LI X, et al. Research on topology of medium voltage hybrid DC circuit breaker based on IGCT[C]// 2020 4th International Conference on HVDC (HVDC), 2020:129-133.
|
[46] |
YI Q, WU Y, ZHANG Z, et al. Low-cost HVDC circuit breaker with high current breaking capability based on IGCTs[J]. IEEE Transactions on Power Electronics, 2021, 36(5):4948-4953.
|
[47] |
ZHANG F, REN Y, SHI Z, et al. Novel hybrid DC circuit breaker based on series connection of thyristors and IGBT half-bridge Submodules[J]. IEEE Transactions on Power Electronics, 2021, 36(2):1506-1518.
|
[48] |
QIN K, WANG S, MA J, et al. Thyristor-based DCCB with reliable fast reclosing protection ability by restoring capacitor polarity[J]. IEEE Transactions on Power Electronics, 2023, 38(6):7760-7770.
|
[49] |
裴翔羽, 贾重霄, 周万迪, 等. 基于可控振荡的电流注入型混合式直流断路器[J/OL]. 电工技术学报,1-15[2024-05-10].https://doi.org/10.19595/j.cnki.1000-6753.tces.231964.
|
[50] |
SHEN Z J, ZHOU Y, NA R, et al. A series-type hybrid circuit breaker concept for ultrafast DC fault protection[J]. IEEE Transactions on Power Electronics, 2022, 37(6):6275-6279.
|
[51] |
LIU Z, ZHANG C, YANG Y, et al. A series-type dual-coupled-inductors based hybrid circuit breaker with simple start-up operation and adaptive reclosing capability[J]. IEEE Transactions on Power Electronics, 2023, 38(11):14652-14664.
|
[52] |
FENG Y, ZHOU X S. KRSTIC S, et al. Molded case electronically assisted circuit breaker for DC power distribution systems[J]. IEEE Transactions on Power Electronics, 2021, 36(6):6586-6595.
|
[53] |
张照资, 高偲智, 汪倩, 等. 自触型低压混合式直流断路器系统设计与开断特性研究[J]. 中国电机工程学报, 2024, 44(11):4544-4556.
|
[54] |
HYON B J, JANG P R, JOO D, et al. Design of a solid state circuit breaker using a SiC MOSFET for LVDC Applications[J]. IEEE Access, 2024, 12:65278-65286.
|
[55] |
QIN K, WANG S, MA J, et al. A thyristor-based reliable bidirectional SSCB with fast-reclosing protection function[J]. IEEE Transactions on Industrial Electronics, 2024, 71(8):8841-8852.
|
[56] |
XU C, SONG X, CAIROLI P. SiC based solid state circuit breaker:Thermal design and analysis[C]// 2022 IEEE Transportation Electrification Conference & Expo (ITEC), 2022:1105-1110.
|
[57] |
KHEIROLLAHI R, ZHENG Z, ZHAO S, et al. Techno-economic analysis of solid-state circuit breakers in DC power system applications:design,cost,and performance analyses[J]. IEEE Industry Applications Magazine, 2024, 30(3):32-45.
|