电器与能效管理技术 ›› 2023, Vol. 0 ›› Issue (7): 70-76.doi: 10.16628/j.cnki.2095-8188.2023.07.011

• 识别与预测技术 • 上一篇    

基于相似日和Optuna-LightGBM的智能控制柜内部环境预警评估方法

尹康, 钟婷婷, 黄昕颖, 李丽   

  1. 浙江华云电力工程设计咨询有限公司, 浙江 杭州 310000
  • 收稿日期:2023-02-27 出版日期:2023-07-30 发布日期:2023-09-20
  • 作者简介:尹 康(1984—),男,高级工程师,主要从事电力系统保护与控制、新能源、电力系统数据挖掘研究。|钟婷婷(1990—),工程师,主要从事继电保护、电力工程设计研究。|黄昕颖(1990—),工程师,主要从事电力系统保护与控制研究。

Early-Warning Evaluation Method of Intelligent Control Cabinet Interior Environment Based on Similar Days and Optuna-LightGBM

YIN Kang, ZHONG Tingting, HUANG Xinying, LI Li   

  1. Zhejiang Huayun Electric Power Engineering Design Consulting Co.,Ltd., Hangzhou 310000, China
  • Received:2023-02-27 Online:2023-07-30 Published:2023-09-20

摘要:

针对基于事件驱动的智能控制柜温湿度预测精度较低,无法及时对柜内温湿度异常进行预警的问题,提出了一种基于相似日和Optuna-LightGBM的温湿度预测方法。利用相似日算法选取合适的模型训练数据集,构建基于LightGBM的温湿度预测模型,用Optuna优化模型参数。最后,提出了一种基于曲线拐点检测的预警参数阈值计算方法,分析预测模型得到的温湿度曲线特性,实现温湿度预警。实验结果显示,所提方法的温度预测误差MAPE为0.35%,湿度预测误差MAPE为0.73%,可实现对柜内温湿度的精准预测并及时预警。

关键词: 轻量级梯度提升机, Optuna, 相似日算法, 环境预警, 温湿度控制系统

Abstract:

A temperature and humidity prediction method based on similar days and Optuna-LightGBM is proposed to address the issue of low prediction accuracy of temperature and humidity in event driven intelligent control cabinets,which can’t provide the timely warning of abnormal temperature and humidity inside the cabinets.The similar day algorithm is used to select the suitable model training data sets.A temperature and humidity prediction model is constructed based on LightGBM.Using Optuna the model parameters are optimized.Finally,a threshold calculation method for warning parameters based on the curve inflection point detection is proposed.The temperature and humidity curve characteristics obtained from the prediction model are analyzed to achieve temperature and humidity warning.The experimental results show that the temperature prediction error MAPE of the proposed method is 0.35%,and the humidity prediction error MAPE is 0.73%,which can achieve the accurate prediction of temperature and humidity inside the cabinet and timely warning.

Key words: light gradient boosting machine (LightGBM), Optuna, similar day algorithm, environmental warning, temperature and humidity control system

中图分类号: