电器与能效管理技术 ›› 2024, Vol. 0 ›› Issue (6): 64-69.doi: 10.16628/j.cnki.2095-8188.2024.06.010

• 评估与预测技术 • 上一篇    下一篇

基于VarianceThreshold-GARFECV的特征选择方法

马嘉晨1, 高松2, 王蕾2   

  1. 1.东北电力大学 电气工程学院, 吉林 吉林 132012
    2.国网吉林省电力有限公司 电力科学研究院, 吉林 长春 130021
  • 收稿日期:2024-03-04 出版日期:2024-06-30 发布日期:2024-07-15
  • 作者简介:马嘉晨(1998—),女,硕士研究生,研究方向为电力系统稳定与控制。|高 松(1989—),男,高级工程师,主要从事电网运行方式计算、新能源并网技术研究。|王 蕾(1997—),女,工程师,主要从事电网运行方式计算、无功电压分析工作。

Feature Selection Method Based on VarianceThreshold-GARFECV

MA Jiachen1, GAO Song2, WANG Lei2   

  1. 1. School of Electrical Engineering,Northeast Electric Power University, Jilin 132012, China
    2. State Grid Jilin Electric Power Research Institute, Changchun 130021, China
  • Received:2024-03-04 Online:2024-06-30 Published:2024-07-15

摘要:

针对主动配电网风险初始特征子集存在冗余故障特征变量和非强相关变量的问题,提出一种基于VarianceThreshold-GARFECV的特征选择方法。所提方法结合方差阈值和基于遗传算法的递归特征消除交叉验证(RFECV)技术,能够有效选择出最优的特征集合。实验结果表明,所提方法可以对配电网故障风险初始特征集合进行筛选和选择,剔除关联性弱和冗余的特征变量,从而达到降低配电网数据的复杂性、避免过拟合、增加模型的可解释性的目的,具有较高的准确率和稳定性。

关键词: 特征选择, 态势感知, 风险预测, VarianceThreshold

Abstract:

In view of the existence of redundant fault characteristic variables and non-strongly correlated variables in the initial feature subset of active distribution network risk, a feature selection method based on VarianceThreshold-GARFECV is proposed. The proposed method combines the variance threshold and the recursive feature cancellation cross-validation(RFECV) technology based on genetic algorithm, which can effectively select the optimal feature set. Experimental results show that the proposed method can screen and select the initial feature set of distribution network fault risk, and eliminate the characteristic variables with weak correlation and redundancy, so as to reduce the complexity of distribution network data, avoid overfitting, and increase the interpretability of the model, with high accuracy and stability.

Key words: feature selection, situational awareness, risk prediction, VarianceThreshold

中图分类号: