电器与能效管理技术 ›› 2021, Vol. 0 ›› Issue (10): 33-41.doi: 10.16628/j.cnki.2095-8188.2021.10.006

• 研究与分析 • 上一篇    下一篇

退役动力电池剩余电量状态估计方法研究

闫湖1, 胡静1, 王哲2   

  1. 1.国网能源研究院有限公司, 北京 102209
    2.储能技术工程研究中心(北方工业大学), 北京 100144
  • 收稿日期:2021-05-28 出版日期:2021-10-30 发布日期:2022-01-25
  • 作者简介:闫 湖(1985—),女,高级工程师,硕士,主要从事国内外能源转型分析、新能源技术经济等研究。|胡 静(1984—),女,高级工程师,博士,主要从事新能源、储能技术等研究。|王 哲(1997—),男,硕士研究生,主要从事大规模储能技术研究。
  • 基金资助:
    国家电网有限公司总部科技项目(5419-201957216A-0-0-00)

Research on Discharge State Estimation Method of Retired Power Battery

YAN Hu1, HU Jing1, WANG Zhe2   

  1. 1. State Grid Energy Research Institute Co.,Ltd.,Beijing 102209,China
    2. Energy Storage Technology Engineering Research Center (North China University of Technology),Beijing 100144,China
  • Received:2021-05-28 Online:2021-10-30 Published:2022-01-25

摘要:

根据已有电池特性数据,首先利用熵值法计算了电池特性的权重,然后采用灰色关联分析方法计算出电池特性间的关联度,最后以退役动力电池的可放电量作为放电状态估计的指标,联合支持向量回归机(SVR)和粒子群算法(PSO)建立了指标估算模型,最后通过退役动力电池的充放电测试验证了整个方法的有效性。试验结果表明,所提估计方法能够用于退役动力电池的状态跟踪。

关键词: 退役动力电池, 电池特性, 放电状态估计, 熵值法, 灰色关联分析方法, 支持向量回归机, 粒子群算法

Abstract:

Based on the existing battery characteristics data,this paper uses entropy value method to calculate the weight of the battery characreristics,and then uses the grey correlation analysis method to calculate the correlation between the battery character is tics,and lastly takes the dischargeable capaeity of retired power battery as indicators of discharge stare estimation,combining support vector machine (SVR) and particle swarm optimization(PSO) to establish the index evaluation model.Fially,the chargeng and discharging test of the rerired power bactery verifies the effectiveness of the method.The test results show that the estimation method can be used for retired power battery status tracking.

Key words: retired power battery, battery characteristics, discharge state estimation, entropy value method, grey correlation analysis method, support vector machine, particle swarm optimization

中图分类号: