电器与能效管理技术 ›› 2020, Vol. 0 ›› Issue (12): 14-21.doi: 10.16628/j.cnki.2095-8188.2020.12.003

• 研究与分析 • 上一篇    下一篇

基于声发射技术的典型缺陷局放信号特征分析及识别研究

梁建英1, 孙传铭1, 杨刚2, 高国强2, 魏隆1, 刘凯2   

  1. 1.中车青岛四方机车车辆股份有限公司,山东 青岛 266111
    2.西南交通大学 电气工程学院,四川 成都 611756
  • 收稿日期:2020-10-14 出版日期:2020-12-30 发布日期:2021-01-05
  • 作者简介:梁建英(1972—),女,教授级高级工程师,主要从事高速动车组电气系统设计,高速动车组牵引供电技术研究。|孙传铭(1981—),男,高级工程师,主要从事高速动车组高压系统设计与研究、永磁牵引电机设计与应用。|杨 刚(1994—),男,硕士研究生,研究方向为高压电气设备绝缘在线监测与故障诊断。
  • 基金资助:
    * 国家自然科学基金项目(51907167)

Study on Characteristics and Pattern Recognition of Typical Defect Emission Signal Based on Acoustic Emission Technology

LIANG Jianying1, SUN Chuanming1, YANG Gang2, GAO Guoqiang2, WEI Long1, LIU Kai2   

  1. 1. CRRC Qingdao Sifang Co.,Ltd.,Qingdao 266111,China
    2. College of Electrical Engineering,Southwest Jiaotong University,Chengdu 611756,China
  • Received:2020-10-14 Online:2020-12-30 Published:2021-01-05

摘要:

针对电气设备运行过程中常见的绝缘缺陷故障,制作了几种典型缺陷的局部放电模型,包括尖端放电、沿面放电、气隙放电及悬浮放电。通过对不同缺陷放电声发射信号的时域波形、信号参数关联图谱特征的比较,得出4种类型放电声发射信号在脉冲幅值、相位、形状及工频正负半周对称性方面具有较大差异性;针对这种差异,提取了18个声发射波形特征参数,设计了多分类支持向量机分类器。识别测试结果表明,对4种典型缺陷局部放电类型的识别率达到92%,因此局部放电声发射波形特征参数可用于放电类型识别。

关键词: 放电类型, 声发射, 关联图谱, 支持向量机

Abstract:

Aiming at the common insulation defects during the operation of electrical equipment,this article has produced several typical partial discharge models of defects,including tip discharge,creeping discharge,air gap discharge and floating discharge.By comparing the time-domain waveforms of the discharge acoustic emission signals of different defects recorded by the test system and the characteristics of the correlation graph of the parameters of the discharge acoustic emission signal,the positive and negative of the pulse amplitude,phase,shape and power frequency of the four types of discharge acoustic emission signals are obtained.There is a big difference in half-cycle symmetry;in response to this difference,18 acoustic emission waveform feature parameters are extracted,a multi-class support vector machine classifier is designed.The recognition test results show that for the recognition of four typical types of partial discharges of defects,the rate reaches 92%,so the partial discharge acoustic emission waveform characteristic parameters can be used for discharge type identification.

Key words: discharge type, acoustic emission, correlation analysis atlas, support vector machine

中图分类号: