电器与能效管理技术 ›› 2025, Vol. 0 ›› Issue (9): 1-12.doi: 10.16628/j.cnki.2095-8188.2025.09.001

• 研究与分析 •    下一篇

基于Filtering LSTM-Lightweight CNN的交流串联电弧故障检测方法

何键涛, 王兆锐, 鲍光海   

  1. 福州大学 电气工程与自动化学院,福建 福州 350108
  • 收稿日期:2025-03-15 出版日期:2025-09-30 发布日期:2025-10-31
  • 作者简介:何键涛(1999—),男,硕士研究生,研究方向为人工智能技术在电机电器中的应用。|王兆锐(2001—),男,硕士研究生,研究方向为人工智能技术在电机电器中的应用。|鲍光海(1977—),男,教授,博士生导师,研究方向为电器及其系统智能化与故障诊断。
  • 基金资助:
    福建省科技计划项目(2023H0007)

An AC Series Arc Fault Detection Method Based on Filtering LSTM-Lightweight CNN

HE Jiantao, WANG Zhaorui, BAO Guanghai   

  1. College of Electrical Engineering and Automation,Fuzhou University,Fuzhou 350108,China
  • Received:2025-03-15 Online:2025-09-30 Published:2025-10-31

摘要:

针对基于深度学习的电弧故障检测方法在未知多负载电路中存在泛化性能不足的问题,提出一种基于高频耦合模拟信号驱动的过滤长短时记忆(Filtering LSTM)神经网络,并将其与轻量级卷积神经网络(Lightweight CNN)相结合,构建了Filtering LSTM-Lightweight CNN电弧故障检测模型。通过将单负载电路的高频耦合信号线性叠加,即可模拟出多负载电路的高频耦合信号。然后利用模拟信号驱动Filtering LSTM,过滤多负载电路信号中的未知特征,并重构信号。最后采用树结构Parzen估计器优化过的Lightweight CNN对重构信号进行电弧故障检测。实验表明,在136 000个未知多负载电路样本中,Filtering LSTM-Lightweight CNN的电弧故障检测准确率为99.45%。与未采用Filtering LSTM的检测算法相比,所提方法的检测准确率最高提升了14.05%,显著提升了电弧故障检测模型的泛化能力。

关键词: 串联电弧故障, 特征过滤, 轻量级卷积神经网络, 故障检测

Abstract:

To address the insufficient generalization performance of deep learning-based arc fault detection methods in unknown multi-load circuits,a Filtering Long Short-Term Memory (Filtering LSTM) neural network driven by high-frequency coupled analog signals is proposed. By combining this network with a Lightweight convolutional neural network (Lightweight CNN),a Filtering LSTM-Lightweight CNN arc fault detection model is constructed. The high-frequency coupled signals of multi-load circuits can be simulated through the linear superposition of high-frequency coupled signals from single-load circuits. These analog signals are then used to drive the Filtering LSTM,which filters out unknown features in the multi-load circuit signals and reconstructs the signals. Finally,a Lightweight CNN optimized by the tree-structured Parzen estimator is employed to perform arc fault detection on the reconstructed signals. Experiments demonstrate that the Filtering LSTM-Lightweight CNN achieves an arc fault detection accuracy of 99.45% among 136 000 unknown multi-load circuit samples. Compared with detection algorithms that do not adopt Filtering LSTM,the proposed method improves the detection accuracy by up to 14.05%,significantly enhancing the generalization ability of the arc fault detection model.

Key words: series arc fault, feature filtering, Lightweight convolutional neural network (Lightweight CNN), fault detection

中图分类号: