电器与能效管理技术 ›› 2025, Vol. 0 ›› Issue (12): 34-39.doi: 10.16628/j.cnki.2095-8188.2025.12.005

• 研究与分析 • 上一篇    下一篇

基于改进随机森林的涡流检测方法研究

李冶1, 刘国辉1, 李鑫2, 武顺强3   

  1. 1 广东电网有限责任公司 江门供电局, 广东 江门 529000
    2 合肥工业大学 电气与自动化工程学院, 安徽 合肥 230000
    3 广东电网有限责任公司 江门恩平供电局, 广东 江门 529400
  • 收稿日期:2025-08-27 出版日期:2025-12-30 发布日期:2025-12-31
  • 作者简介:李 冶(1989—),男,工程师,主要从事电力工程技术研究。|刘国辉(1990—),男,工程师,主要从事电力工程技术研究。|李 鑫(1976—),男,副教授,研究方向为复杂系统建模与控制、神经网络学习与控制等。
  • 基金资助:
    安徽省重点研究与开发计划项目资金资助(202104a05020078)

Research on Eddy Current Detection Method Based on Improved Random Forest

LI Ye1, LIU Guohui1, LI Xin2, WU Shunqiang3   

  1. 1 Jiangmen Power Supply Bureau, Guangdong Power Grid Co., Ltd., Jiangmen 529000, China
    2 School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230000, China
    3 Jiangmen Enping Power Supply Bureau of Guangdong Power Grid Co., Ltd., Jiangmen 529400, China
  • Received:2025-08-27 Online:2025-12-30 Published:2025-12-31

摘要:

在智能电网建设中为保障结构安全,可通过有效检测方法精准获取混凝土结构中钢筋直径信息,提出一种改进的随机森林涡流检测方法,用于钢筋直径预测。利用主成分分析(PCA)对特征降维,剔除冗余信息,突出关键特征;引入K近邻(KNN)算法优化随机森林模型的叶节点预测,提升模型泛化能力和鲁棒性;实验借助Ansys Maxwell电磁仿真软件构建有限元模型采集样本数据,并采用均方误差(MSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)作为评估指标。结果表明,所提方法在测试集上的预测精度显著优于传统随机森林模型。所提方法能有效增强随机森林性能,在智能电网建设中的钢筋直径无损检测方面具备高效、精准的优势,拥有实际工程应用的广泛推广价值。

关键词: 改进随机森林, 钢筋直径检测, 涡流检测, 主成分分析, K近邻

Abstract:

To ensure the structural safety in smart grid construction, the accurate information on the diameter of steel bars in concrete structure can be obtained by effective detection methods. According, an improved random forest eddy current detection method for predicting the steel diameter is proposed. The principal component analysis(PCA) is used to reduce the dimensionality of features, eliminate the redundant information and highlight the key features. At the same time, the K-nearest neighbors(KNN) algorithm is introduced to optimize the leaf node prediction of the random forest model, thereby improving its generalization ability and robustness. The sample data is collected by constructing a finite element model with the help of Ansys Maxwell electromagnetic simulation software, and mean square error(MSE), mean absolute error(MAE) and mean absolute percentage error(MAPE) are adopted as evaluation indexes. The results demonstrate that the proposed method achieves significantly higher prediction accuracy than the traditional random forest model on the test set. The proposed method has been shown to effectively enhance the performance of the random forest model, demonstrating the advantages of high efficiency and accuracy in the non-destructive testing of steel bar diameter in smart grid construction, with the wide application potential in practical engineering.

Key words: improve random forest, steel bar diameter detection, eddy current testing, principal component analysis, K-nearest neighbor(KNN)

中图分类号: