电器与能效管理技术 ›› 2021, Vol. 0 ›› Issue (8): 51-57.doi: 10.16628/j.cnki.2095-8188.2021.08.010

• 分布式电源及并网技术 • 上一篇    下一篇

基于改进长短期记忆网络和高斯过程回归的光伏功率预测方法

邓惟绩1, 肖辉1, 李金泽2, 王家奇1, 卢文韬1   

  1. 1.长沙理工大学 电气与信息工程学院, 湖南 长沙 410114
    2.广东电网有限责任公司 惠州供电局, 广东 惠州 516211
  • 收稿日期:2021-03-04 出版日期:2021-08-30 发布日期:2021-10-14
  • 作者简介:邓惟绩(1995—),男,硕士研究生,研究方向为新能源发电及其并网技术。|肖辉(1975—),女,教授,研究方向为电力系统运行与优化、新能源发电及其并网技术。|李金泽(1996—),男,主要从事新能源发电及其并网技术研究。
  • 基金资助:
    *国家自然科学基金项目(51708914);国家自然科学基金项目(51507014)

Photovoltaic Power Prediction Method Based on Improved Long Short Term Memory Network and Gaussian Process Regression

DENG Weiji1, XIAO Hui1, LI Jinze2, WANG Jiaqi1, LU Wentao1   

  1. 1. School of Electrical and Information Engineering,Changsha University of Technology, Changsha 410144,China
    2. Huizhou Power Supply Bureau of Guangdong Power Grid Co.,Ltd.,Huizhou 516211,China
  • Received:2021-03-04 Online:2021-08-30 Published:2021-10-14

摘要:

为了获得精确的光伏功率预测结果和量化其不确定性,提出了一种基于改进长短期记忆网络(LSTM)与高斯过程回归(GPR)的光伏功率预测方法。首先,为了减少需要优化的变量,对LSTM结构进行改进,随后将利用遗传算法得出的最优特征变量组合输入改进LSTM得到第一次点预测结果,然后将第一次点预测结果和实际值结合GPR得到最终具有概率意义的预测结果。最后以湖南竺家光伏电站为例进行仿真验证,仿真结果表明所提方法相较于其他方法能够在较短时间内获得高精度、预测区间合适、可靠性强的预测结果,能够同时兼顾准确性和可靠性,具有一定的实际工程指导意义。

关键词: 长短期记忆网络, 光伏功率预测, 高斯过程回归, 概率分布函数, 区间预测

Abstract:

In order to obtain accurate photovoltaic power prediction results and quantify its uncertainty,a photovoltaic power prediction method based on improved long-term memory network (LSTM) and Gaussian process regression (GPR) is proposed.Firstly,in order to reduce the variables that need to be optimized,the structure of LSTM is improved.Then,the optimal characteristic variables obtained by genetic algorithm are combined into the improved LSTM to get the first point prediction result.Then,the first point prediction result and the actual value are combined with GPR to get the final prediction result with probability significance.Finally,taking Zhujia photovoltaic power station in Hunan Province as an example,the simulation results show that compared with other methods,this method can obtain high-precision,suitable prediction interval and strong reliability prediction results in a short time,which proves that this photovoltaic power prediction method can take into account both accuracy and reliability,and has a certain practical engineering significance.

Key words: long short term memory network, photovoltaic power prediction, Gaussian process regression, probability distribution function, interval prediction

中图分类号: