电器与能效管理技术 ›› 2025, Vol. 0 ›› Issue (11): 42-50.doi: 10.16628/j.cnki.2095-8188.2025.11.006

• 配网技术与系统 • 上一篇    下一篇

基于ADKDE-LSTM的变电站短期负荷功率区间预测研究

包育德, 邱润韬, 许博智   

  1. 广东电网 广州供电局, 广东 广州 510663
  • 收稿日期:2025-08-15 出版日期:2025-11-30 发布日期:2025-12-11
  • 作者简介:包育德(1992—),男,工程师,主要从事开放电力市场、新型电力系统、电动汽车、智能运维的研究工作。|邱润韬(1997—),男,工程师,主要从事面向负载率提升的智能运维技术的研究工作。|许博智(1997—),男,工程师,主要从事开放力市场、新型电力系统的研究工作。
  • 基金资助:
    国家自然科学基金资助项目(52307080)

Research on Short-Term Load Power Interval Prediction for Substations Based on ADKDE-LSTM

BAO Yude, QIU Runtao, XU Bozhi   

  1. Guangzhou Power Supply Bureau of Guangdong Power Grid, Guangzhou 510663, China
  • Received:2025-08-15 Online:2025-11-30 Published:2025-12-11

摘要:

针对变电站短期负荷预测中非线性适应差、区间估计不准的问题,提出一种自适应扩散核密度估计与长短期记忆网络(ADKDE-LSTM)融合的区间预测方法。融合历史负荷与气象数据,通过ADKDE方法分析误差分布,结合LSTM建模时序特征,构建95%置信水平的预测区间。基于某220 kV变电站数据的实验表明,模型在4个数据集的平均预测区间覆盖率(PICP)达0.914,预测区间宽度(PIAW)较对比模型降低20%~30%。所提方法能精准量化负荷不确定性,为电网规划提供可靠区间预测支撑。

关键词: 数据融合, ADKDE-LSTM, 区间负荷预测, 自适应扩散核密度估计

Abstract:

To address the challenges of poor nonlinear adaptability and inaccurate interval estimation in substation short-term load prediction,an interval prediction method integrating adaptive diffusion kernel density estimation (ADKDE) with long short-term memory networks (LSTM) is proposed.Historical load and meteorological data are fused,where ADKDE method analyzes error distributions and LSTM network temporal features to construct prediction intervals at a 95% confidence level.Experimental results based on a 220 kV substation dataset demonstrate that the proposed model achieves an average prediction interval coverage probability (PICP) of 0.914 across four datasets,while reducing the prediction interval average width (PIAW) by 20%-30% compared to the comparison models.The proposed method effectively quantifies load uncertainty,providing reliable interval predictions to support power grid planning.

Key words: data fusion, ADKDE-LSTM, interval load prediction, adaptive diffusion kernel density estimation (ADKDE)

中图分类号: