电器与能效管理技术 ›› 2022, Vol. 0 ›› Issue (2): 53-62.doi: 10.16628/j.cnki.2095-8188.2022.02.009

• 配网自动化 • 上一篇    下一篇

基于EMD-Stacking-MLR的台区配变短期负荷预测方法

杨秀1, 胡钟毓1, 田英杰2, 谢海宁2   

  1. 1.上海电力大学 电气工程学院, 上海 200090
    2.国网上海市电力公司电力科学研究院, 上海 200080
  • 收稿日期:2021-09-18 出版日期:2022-02-28 发布日期:2022-03-31
  • 作者简介:杨 秀(1972—),男,教授,博士,研究方向为分布式发电与微网技术等。|胡钟毓(1995—),女,硕士研究生,研究方向为深度学习与电力大数据分析技术。|田英杰(1969—),男,高级工程师,主要从事电力大数据的应用研究及开发工作。
  • 基金资助:
    上海电力人工智能工程技术研究中心项目(19DZ2252800)

Short-Term Load Forecasting Method of Distribution Transformer Based on EMD-Stacking-MLR

YANG Xiu1, HU Zhongyu1, TIAN Yingjie2, XIE Haining2   

  1. 1. School of Electrical Engineering,Shanghai University of Electric Power,Shanghai 200090,China
    2. State Grid Shanghai Electrical Power Research Institute,Shanghai 200080,China
  • Received:2021-09-18 Online:2022-02-28 Published:2022-03-31

摘要:

传统短期负荷预测方法多为基于数据驱动的机器学习方法,应用场景多为较宏观的市/县区域总负荷预测,而面对台区配变负荷,其预测效果明显不足。对此,构建了一种基于EMD-Stacking-MLR的负荷预测方法。首先,将台区配变负荷数据通过经验模态分解方法分解为频率由高到低的有限本征模函数分量,利用样本熵大小为依据划分高、低频分量;随后,采用Stacking多模型融合方法和多元线性回归方法分别对高、低频分量进行预测;最后,叠加各分量预测结果得到最终配变预测负荷曲线。通过实验验证,结果表明所提方法在提升负荷预测精度和模型泛化能力方面成效显著。

关键词: 模态经验分解性(EMD), Stacking集成学习, MLR, 短期负荷预测, 台区配变

Abstract:

The traditional short-term load forecasting methods are mostly data-driven machine learning methods,and the application scenarios are mostly macroscopic city/county regional total load forecasting.In the face of the distribution transformer load,the prediction effect is obviously insufficient.In this regard,a load forecasting method based on EMD-Stacking-MLR is constructed.Firstly,the distribution transformer load data are decomposed into finite intrinsic mode function components from high to low frequency by empirical mode decomposition method.The high and low frequency components are divided according to the sample entropy value.Subsequently,Stacking multi-model fusion method and multiple linear regression method are used to predict the high and low frequency components respectively.Finally,the final distribution transformer prediction load curve is obtained by superposition of every components prediction results.Through experimental verification,the results show that this method has achieved remarkable results in improving the load forecasting accuracy and model generalization ability.

Key words: empirical mode decomposition(EMD), Stacking ensemble learning, MLR, short-term load forecasting, distribution transformer

中图分类号: