电器与能效管理技术 ›› 2025, Vol. 0 ›› Issue (9): 33-39.doi: 10.16628/j.cnki.2095-8188.2025.09.004

• 研究与分析 • 上一篇    下一篇

基于SSA-RFR的涡流检测方法研究

叶炎锋1, 吴艺鹏1, 李鑫2, 梁安怡1   

  1. 1.广东电网有限责任公司 江门供电局, 广东 江门 529000
    2.合肥工业大学 电气与自动化工程学院, 安徽 合肥 230000
  • 收稿日期:2025-07-22 出版日期:2025-09-30 发布日期:2025-10-31
  • 作者简介:叶炎锋(1981—),男,高级工程师,主要从事电气工程技术研究、机械化施工和工程管理等工作。|吴艺鹏(1986—),男,工程师,主要从事配网线路与自动化管理、工程项目建设、管理等工作。|李 鑫(1976—),男,副教授,博士,研究方向为复杂系统建模与控制、神经网络学习与控制等。

A Study on Eddy Current Testing Method Based on SSA-RFR

YE Yanfeng1, WU Yipeng1, LI Xin2, LIANG Anyi1   

  1. 1. Jiangmen Power Supply Bureau of Guangdong Power Grid Co., Ltd., Jiangmen 529000, China
    2. School of Electrical Engineering and Automation,Hefei University of Technology, Hefei 230000, China
  • Received:2025-07-22 Online:2025-09-30 Published:2025-10-31

摘要:

针对锈蚀引起的结构构件直径减小问题,提出一种基于麻雀搜索算法优化的随机森林回归(SSA-RFR)的无损检测方法。首先,在1 kHz脉冲激励下采集不同直径试件的涡流响应信号,采用卡尔曼滤波对原始信号进行去噪处理,以提高信号质量。随后,通过指数函数拟合提取关键特征参数,为后续建模提供有效输入。最终,构建SSA-RFR预测模型对构件直径进行回归分析与预测。实验结果表明,所提方法的均方误差(MSE)为0.310 6,较传统随机森林回归模型降低约97.9%,显著提升了预测精度,同时也验证了所提方法在无损检测中的有效性与工程应用价值。

关键词: 直径检测, 麻雀搜索算法优化-随机森林回归, 无损检测, 随机森林

Abstract:

To address the issue of diameter reduction in structural components due to corrosion, a non-destructive testing method based on the sparrow search algorithm-optimized random forest regression (SSA-RFR) is proposed. Firstly, the eddy current response signals from specimens with varying diameters are collected under 1 kHz pulsed excitation. Kalman filtering is applied to denoise the raw signals,enhancing their quality.Subsequently, the key feature parameters are extracted via exponential function fitting to serve as effective inputs for modeling.Finally, an SSA-RFR predictive model is developed for regression analysis and prediction of component diameter.Experimental results demonstrate that the mean squared error (MSE) of the proposed method is 0.310 6, representing a reduction of approximately 97.9% compared to the traditional Random Forest Regression model and markedly enhancing prediction accuracy.These findings validate the effectiveness and engineering applicability of the proposed SSA-RFR method for non-destructive testing.

Key words: diameter detection, sparrow search algorithm-optimized random forest regression (SSA-RFR), non-destructive testing, random forest

中图分类号: