电器与能效管理技术 ›› 2023, Vol. 0 ›› Issue (3): 73-80.doi: 10.16628/j.cnki.2095-8188.2023.03.012

• 检测与试验 • 上一篇    

基于经验模态分解与多视角聚类的异常用电模式检测

王建元, 刘柯辰   

  1. 现代电力系统仿真控制与绿色电能新技术教育部重点实验室 (东北电力大学), 吉林 吉林 132012
  • 收稿日期:2023-02-01 出版日期:2023-03-30 发布日期:2023-04-11
  • 作者简介:王建元(1971—),男,教授,博士,研究方向为智能配电网运行与控制、大数据分析等。|刘柯辰(1998—),女,硕士研究生,研究方向为电力大数据分析。

Abnormal Power Consumption Mode Detection Based on Empirical Mode Decomposition and Multi-View Clustering

WANG Jianyuan, LIU Kechen   

  1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education (Northeast Electric Power University),Jilin 132012,China
  • Received:2023-02-01 Online:2023-03-30 Published:2023-04-11

摘要:

针对现有异常用电检测方法检出效率低下的问题,提出一种基于经验模态与多视角聚类的异常检测方法。遵循“经验模态分解-维度制约-多视角聚类-横向检测-纵向检测”的流程,通过多视角聚类结合初步判据,显著提高了检出率。在异常检测算法中,提出基于网格的熵离群因子(Grid-EOF)算法,并基于纵向检测给出新的判据,提高了不明显窃电行为用户的检出率。最后,用国家电网智能电表实测数据检测验证,结果表明多视角聚类和改进算法以及纵向检测的引入,能有效提高异常检测模型的检出率和准确率。

关键词: 异常用电检测, 经验模态分解, 多视角聚类, 香农熵

Abstract:

In order to solve the low detection efficiency of the existing abnormal power consumption detection methods,the anomaly detection method based on empirical mode and multi view clustering is proposed.Following the process of "empirical mode decomposition-dimensional constraints-multi-view clustering-horizontal detection-vertical detection" and combining the multi-view clustering with the preliminary criteria,the detection rate is significantly improved.In the anomaly detection algorithm,the grid-based entropy outlier factor (Grid-EOF) algorithm is proposed.A new criterion is given based on the longitudinal detection,which can improve the detection rate of users with unknown electricity theft.Finally,it is verified by the measured data of smart meters of the State Grid of China.The results show that the introduction of multi-view clustering,improved algorithm and longitudinal detection can effectively improve the detection rate and accuracy of the anomaly detection model.

Key words: abnormal electricity utilization detection, empirical mode decomposition, multi-view clustering, Shannon entropy

中图分类号: