电器与能效管理技术 ›› 2022, Vol. 0 ›› Issue (3): 39-44.doi: 10.16628/j.cnki.2095-8188.2022.03.006

• 研究与分析 • 上一篇    下一篇

基于粒子群算法改进极限学习机的风电功率短期预测

田艳丰, 王顺, 王哲, 刘洋, 邢作霞   

  1. 沈阳工业大学 电气工程学院, 辽宁 沈阳 110870
  • 收稿日期:2021-12-28 出版日期:2022-03-30 发布日期:2022-04-28
  • 作者简介:田艳丰(1971—),女,教授,博士,研究方向为风力发电智能监控、新能源分布式发电、鲁棒控制等。|王顺(1995—),男,硕士研究生,研究方向为新能源技术及应用。|王哲(1968—),男,教授,博士,研究方向为风力发电系统、智能控制。
  • 基金资助:
    辽宁省“兴辽英才计划”项目(XLYC2008005)

Short Term Prediction of Wind Power Based on Nuclear Improvement to Reduce Particles of Learning Machines

TIAN Yanfeng, WANG Shun, WANG Zhe, LIU Yang, XING Zuoxia   

  1. School of Electrical Engineering,Shenyang University of Technology, Shenyang 110870, China
  • Received:2021-12-28 Online:2022-03-30 Published:2022-04-28

摘要:

风速、风向的随机性导致风电场功率具有很大波动,对风电功率的精确预测在提高电网运行能力,增强电网接收风电能力和适时安排风电场检修计划等方面提供重要依据。提出了一种粒子群优化核极限学习机(PSO-KELM)算法;对风电机组SCADA数据进行预处理,补充和纠正异常数据;针对极限学习机的复共线性问题提出基于核函数的改进极限学习机,避免了极限学习机输出结果的随机性;采用粒子群优化算法对KELM核函数中的惩罚因子和径向参数值进行优化,建立了基于粒子群优化的极限学习机模型。与BPNN与RBFNN等其他方法相比,真实风电场数据验证了该模型的预测精度。

关键词: 风电功率预测, 粒子群优化, 核极限学习机, 径向基函数神经网络

Abstract:

Randomness of wind speed and wind direction leads to large fluctuations in wind fleet capacity.Accurate forecasting of wind energy can provide an important basis for improving the power grid performance,enhancing the power grid's ability to receive wind power and timely arranging the maintenance plan of wind farm.This document provides the particle Legion optimization kernel restricted learning machine (PSO-KELM) algorithm.Preprocess SCADA data of wind turbine generator,supplement and correct abnormal data;Aiming at the multicollinearity problem of extreme learning machine,A foreign learning machine is proposed on the basis of nuclear operation to prevent accidents from driving out a foreign learning machine.The optimization algorithm of particle emissions (PSO) is used to optimize the penile factor and the radiation parameters of the KELM nucleus and generate an external learning model based on optimization of particle emissions.Go on.Compared to other ways like BPNN and RBFNN,this model is confirmed by real wind farm data.

Key words: wind power prediction, particle swarm optimization, nuclear limit learning machine, radial basis function neural network

中图分类号: