电器与能效管理技术 ›› 2021, Vol. 0 ›› Issue (6): 86-91.doi: 10.16628/j.cnki.2095-8188.2021.06.015

• 配网技术与系统 • 上一篇    下一篇

计及双馈风机接入的配电网无功优化

李竹星, 卢家麟, 高琪, 尹军, 路广才   

  1. 长沙理工大学 电气与信息工程学院, 湖南 长沙 410076
  • 收稿日期:2020-12-27 出版日期:2021-06-30 发布日期:2021-10-13
  • 作者简介:李竹星(1995—),男,硕士研究生,研究方向为电力系统稳定分析与控制。|卢家麟(1993—),男,硕士研究生,研究方向为电力系统稳定分析与控制。|高 琪(1995—),男,硕士研究生,研究方向为电力系统稳定分析与控制。
  • 基金资助:
    * 湖南省教育厅重点项目(20A013)

Reactive Power Optimization of Distribution Network Considering Doubly-Fed Fan Access

LI Zhuxing, LU Jialin, GAO Qi, YIN Jun, LU Guangcai   

  1. School of Electrical and Information Engineering,Changsha University of Science & Technology,Changsha 410076,China
  • Received:2020-12-27 Online:2021-06-30 Published:2021-10-13

摘要:

基于风功率具有间歇性和随机性,针对提高发电侧功率预测精度以及利用双馈风机自身无功补偿能力以改善传统的无功优化模型,首先根据天气预报和风电场历史出力数据,采用粒子群算法优化BP神经网络的初始权值和阈值,利用改进的BP神经网络算法预测风机出力曲线;然后以有功网损和各支路电压偏差最小为目标函数,考虑双馈风机自身无功补偿能力与传统无功优化措施相结合,采用粒子群算法对所述无功优化模型进行求解。最后,以改进的IEEE 30节点系统进行仿真验证。结果表明,研究对提高配电网的电压安全水平,降低电网损耗具有实际意义。

关键词: 双馈风机, 电压安全, 改进的BP神经网络算法, 无功优化

Abstract:

Wind power is intermittent and random.Aiming at improving the power prediction accuracy of the power generation side and using the reactive power compensation capability of the doubly-fed wind turbine to improve the traditional reactive power optimization model,this paper first uses the particle swarm algorithm to optimize the initial weights and thresholds of the BP neural network based on the weather forecast and the historical output data of the wind farm,and uses the improved BP neural network algorithm to predict the output curve of the wind turbine.To minimize the active power loss and the voltage deviation of each branch as the objective function,considering the combination of the reactive power compensation capability of the doubly-fed wind turbine and the traditional reactive power optimization measures,the particle swarm algorithm is used to solve the reactive power optimization model.Finally,the improved IEEE 30 node system is used for simulation verification.The results show that the research has practical significance for improving the voltage safety level of the distribution network and reducing the power loss.

Key words: doubly fed induction generator, voltage security, improved BP neural network algorithm, reactive power optimization

中图分类号: