电器与能效管理技术 ›› 2021, Vol. 0 ›› Issue (6): 7-14.doi: 10.16628/j.cnki.2095-8188.2021.06.002

• 研究与分析 • 上一篇    下一篇

基于小波分析的低压电弧特性识别模型的研究

单潇洁1,2, 郑昕1,2   

  1. 1.福州大学 电气工程与自动化学院, 福建 福州 350116
    2.福建省新能源发电与电能变换重点实验室, 福建 福州 350116
  • 收稿日期:2020-12-28 出版日期:2021-06-30 发布日期:2021-10-13
  • 作者简介:单潇洁(1995—),女,硕士研究生,研究方向为电器及其智能化技术。|郑 昕(1976—),男,副教授,研究方向为电器及其智能化技术。
  • 基金资助:
    * 国家自然科学基金资助项目(51707039);福州市科技成果转移转化项目(2020-GX-25);晋江市福大科教园发展中心科研项目(2019-JJFDKY-05)

Research on Identification Model of Low Voltage Arc Characteristics Based on Wavelet Analysis

SHAN Xiaojie1,2, ZHENG Xin1,2   

  1. 1. School of Electrical Engineering and Automation,Fuzhou University,Fuzhou 350116,China
    2. Key Laboratory of New Energy Power Generation and Power Conversion of Fujian Province,Fuzhou 350116,China
  • Received:2020-12-28 Online:2021-06-30 Published:2021-10-13

摘要:

为解决交流系统中电弧状态的准确检测、定量表征以及电弧电压在零后极短时间内变化特征不易识别等问题,提出一种基于不同小波变换特征的交流电弧识别模型。针对串联故障电弧和开关电弧的时频特征,分别构建了正交小波和二进小波两种识别模型并验证了其有效性。引入能量概念并结合二进小波,构建了小波能量谱模型,对开关电弧电压波形进行实际采集和分析,实现对不同负载条件下开关电弧状态的定量表征。仿真和实验结果表明,基于小波分析的交流电弧识别模型在电弧的特征识别与提取方面具有良好的效果,为电弧故障诊断和开关电弧在线监测的实现提供了理论基础和思路。

关键词: 小波识别模型, 串联故障电弧, 开关电弧, 电压波形特征, 能量谱

Abstract:

In order to solve the problems of accurate detection,quantitative characterization of arc state and the difficulty of recognizing arc voltage in a short time after zero,this paper proposed an AC arc recognition model based on different wavelet transform characteristics.Aiming at the time-frequency characteristics of series fault arc and switching arc,two identification models of orthogonal wavelet and dyadic wavelet were constructed and their effectiveness was verified.Introducing the concept of energy and combining dyadic wavelet to construct a wavelet energy spectrum model,the actual acquisition and analysis of the switching arc voltage waveform can realize the quantitative characterization of the switching arc state under different load conditions.The simulation and experimental results show that the AC arc recognition model based on wavelet analysis has a good effect in the recognition and extraction of arc feature,which provides a theoretical basis and new ideas for the diagnosis of arc fault and the on-line monitoring of switching arcs.

Key words: wavelet recognition model, series fault arc, switching arc, voltage waveform characteristics, energy spectrum

中图分类号: