电器与能效管理技术 ›› 2025, Vol. 0 ›› Issue (6): 22-31.doi: 10.16628/j.cnki.2095-8188.2025.06.004

• 研究与分析 • 上一篇    下一篇

基于对抗性判别域自适应的未知新增设备非侵入式负荷识别方法

何胜1,2, 杨皓文3, 赵婧冰3   

  1. 1.上海正泰智能科技有限公司, 上海 201616
    2.正泰低压智能电器研究院, 上海 201616
    3.电工材料电气绝缘全国重点实验室(西安交通大学), 陕西 西安 710049
  • 收稿日期:2025-03-06 出版日期:2025-06-30 发布日期:2025-08-11
  • 作者简介:何 胜(1978—),男,工程师,主要从事智能电器和工控领域的技术研究、产品研发及行业应用。|杨皓文(2001—),男,硕士研究生,研究方向为电力设备故障诊断新技术。|赵婧冰(2001—),女,硕士研究生,研究方向为剩余电流检测与保护定位技术。
  • 基金资助:
    国家重点研发计划项目(2023YFC3807000)

Non-Intrusive Load Identification Method for Unknown Added Devices Based on Adversarial Discriminative Domain Adaptation

HE Sheng1,2, YANG Haowen3, ZHAO Jingbing3   

  1. 1. Shanghai Chint Intelligent Technology Co.,Ltd.,Shanghai 201616, China
    2. Chint Low Voltage Intelligent Electrical Appliances Research Institute, Shanghai 201616, China
    3. State Key Laboratory of Electrical Materials and Electrical Insulation (Xi’an Jiaotong University), Xi’an 710049, China
  • Received:2025-03-06 Online:2025-06-30 Published:2025-08-11

摘要:

针对不同电器设备之间信号特征差异导致的传统非侵入式负荷识别方法在面对未知新增设备时准确率下降和泛化能力不足的问题,提出一种基于对抗性判别域自适应(ADDA)的迁移学习方法。首先,结合特征选择方法,提取不同设备的多维度特征参数,利用源设备特征数据训练源域模型;其次,采用对抗性训练策略,通过引入判别器优化目标设备的特征提取器;最后,通过微调优化模型,完成目标设备上的负荷识别任务。实验结果表明,优化后的识别模型平均准确率达到98.90%,相较于传统迁移学习方法提升18.41%。

关键词: 非侵入式负荷监测, 未知新增设备, 对抗性判别域自适应, 迁移学习

Abstract:

Aiming at the problem that the differences in signal characteristics between different electrical devices lead to the decrease in accuracy and insufficient generalization ability of traditional non-intrusive load recognition methods when facing unknown additional devices, a migration learning method based on the adversarial Discriminative domain adaptation (ADDA) is proposed. First, the multi-dimensional feature parameters of different devices are extracted by combining feature selection methods, and the source domain models are trained using the source device feature data. Then, an adversarial training strategy is employed, with a discriminator introduced to optimize the feature extractor of the target device. Finally, the model is fine-tuned and optimized to complete the load recognition task on the target device. Experimental results show that the optimized recognition model achieves an average accuracy of 98.90%, an improvement of 18.41% compared to the traditional migration learning methods.

Key words: non-intrusive load monitoring, unknown added devices, adversarial discriminative domain adaptation (ADDA), transfer learning

中图分类号: