电器与能效管理技术 ›› 2025, Vol. 0 ›› Issue (3): 46-53.doi: 10.16628/j.cnki.2095-8188.2025.03.007

• 预测技术 • 上一篇    下一篇

基于自适应误差校正的并网逆变器模型预测控制方法研究

王易, 王啸晨, 谢群, 邹一帆, 吕建国   

  1. 南京理工大学 自动化学院, 江苏 南京 210000
  • 收稿日期:2024-12-17 出版日期:2025-03-30 发布日期:2025-04-29
  • 作者简介:王 易(1999—),男,硕士研究生,研究方向为电气工程。|王啸晨(1998—),男,硕士研究生,研究方向为电气工程。|谢 群(2001—),男,硕士研究生,研究方向为电气工程。
  • 基金资助:
    国家自然科学基金项目(51707097)

Research on Model Predictive Control for Grid-Connected Inverter Based on Adaptive Error Correction

WANG Yi, WANG Xiaochen, XIE Qun, ZOU Yifan, LÜ Jianguo   

  1. School of Automation, Nanjing University of Science and Technology, Nanjing 210000, China
  • Received:2024-12-17 Online:2025-03-30 Published:2025-04-29

摘要:

基于有限控制集模型预测控制(FCS-MPC)的并网逆变器存在预测电流误差,且滤波器电感参数失配将会进一步增大该误差的问题,提出了基于自适应误差校正的并网逆变器模型预测控制(MPC)方法。首先建立基于FCS-MPC的并网逆变器模型,研究了预测电流误差产生的原因;然后在电流预测模型中加入误差校正环节,通过扩展卡尔曼滤波器( EKF)实时辨识滤波器电感参数,能在电感参数失配的情况下自适应地修正MPC的参考电流,抑制网侧电流谐波分量。最后,通过仿真验证了所提方法的有效性。

关键词: 有限控制集模型预测控制, 并网逆变器, 自适应误差校正, 电感参数辨识

Abstract:

A model predictive control (MPC) method for the grid-connected inverter based on adaptive error correction is proposed to address the problem that the grid-connected inverter based on the finite control set model predictive control (FCS-MPC) experience prediction current errors, and the mismatch of filter inductance parameters can further exacerbate these errors. Firstly, a model of the grid-connected inverter based on FCS-MPC is established, and the causes of the prediction current errors are studied. Then, an error correction link is added to the current prediction model. By using the extended Kalman filter (EKF) to identify the filter inductance parameters in real time, the MPC reference current can be adaptively corrected when the inductance parameters are mismatched, and the harmonic components of the grid-side current can be suppressed. Finally, the effectiveness of the proposed method is verified by simulations.

Key words: finite control set model predictive control (FCS-MPC), grid-connected inverter, adaptive error correction, inductance parameter identification

中图分类号: