[1] |
张旭, 陈云龙, 岳帅, 等. 风电参与电力系统调频技术研究的回顾与展望[J]. 电网技术, 2018, 42(6):1793-1803.
|
[2] |
毛志宇, 李培强, 郭思源. 基于自适应时间尺度小波包和模糊控制的复合储能控制策略[J/OL]. 电力系统自动化:1-14[2022-12-11].
|
[3] |
孙华东, 王宝财, 李文锋, 等. 高比例电力电子电力系统频率响应的惯量体系研究[J]. 中国电机工程学报, 2020, 40(16):5179-5192.
|
[4] |
MORREN J, HAAN S, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE Transactions on Power Systems, 2006, 21(1):433-434.
doi: 10.1109/TPWRS.2005.861956
|
[5] |
邢鹏翔, 侍乔明, 王刚, 等. 风电机组虚拟惯量控制的响应特性及机理分析[J]. 高电压技术, 2018, 44(4):1302-1310.
|
[6] |
侍乔明, 王刚, 李海英, 等. 考虑调频能力的风电场虚拟惯量多机协同控制策略[J]. 电网技术, 2019, 43(11):4005-4017.
|
[7] |
刘颖明, 王维, 王晓东, 等. 基于滑模控制器的风电场飞轮储能系统的控制方法[J]. 电器与能效管理技术, 2017(10):25-28.
|
[8] |
YANG F, SHAO X Y, MUYEEN S M, et al. Disturbance observer based fractional-order integral sliding mode frequency control strategy for interconnected power system[J]. IEEE Transactions on Power Systems, 2021, 36(6):5922-5932.
doi: 10.1109/TPWRS.2021.3081737
|
[9] |
万陆峰, 徐玉珍. 基于线性自抗扰改进单周期控制[J]. 电器与能效管理技术, 2022(4):19-27.
|
[10] |
乐健, 廖小兵, 章琰天, 等. 电力系统分布式模型预测控制方法综述与展望[J]. 电力系统自动化, 2020, 44, 693(23):265-277.
|
[11] |
LIU J, YAO Q, Hu Y. Model Predictive Control for Load Frequency of Hybrid Power System with Wind Power and Thermal Power[J]. Energy, 2019, 172(1):555-565.
doi: 10.1016/j.energy.2019.01.071
|
[12] |
ALI A, KHAN B, MEHMOOD C A, et al. Decentralized MPC based frequency control for smart grid:2017 International Conference on Energy Conservation and Efficiency (ICECE)[C]. 2017.
|
[13] |
CZ A, SW A, QZ A. Distributed economic MPC for LFC of multi-area power system with wind power plants in power market environment-ScienceDirect[J]. International Journal of Electrical Power & Energy Systems, 2021, 126(4):106-548.
|
[14] |
MA M, CHEN H, LIU X, et al. Distributed model predictive load frequency control of multi-area interconnected power system[J]. International Journal of Electrical Power & Energy Systems, 2014, 62(62):289-298.
doi: 10.1016/j.ijepes.2014.04.050
|
[15] |
LEE J, MULJADI E, SRENSEN P, et al. Releasable kinetic energy-based inertial control of a DFIG wind power plant[J]. IEEE Transactions on Sustainable Energy, 2016, 7(1):279-288.
doi: 10.1109/TSTE.2015.2493165
|
[16] |
YAN W, CHENG L, YAN S, et al. Enabling and Evaluation of Inertial Control for PMSG-WTG Using Synchronverter With Multiple Virtual Rotating Masses in Microgrid[J]. IEEE Transactions on Sustainable Energy, 2020, 11(2):1078-1088.
doi: 10.1109/TSTE.5165391
|
[17] |
SANG S, ZHANG C, CAI X, et al. Control of a type-IV wind turbine with the capability of robust grid-synchronization and inertial response for weak grid stable operation[J]. IEEE Access, 2019, 7:58553-58569.
doi: 10.1109/Access.6287639
|
[18] |
VRDOLJAK K, PERI N, PETROVI I. Sliding mode based load-frequency control in power systems[J]. Electric Power Systems Re-search, 2010, 80(5):514-527.
|
[19] |
SOCKEEL N, GAFFORD J, PAPARI B, et al. Virtual inertia emulator-based model predictive control for grid frequency regulation considering high penetration of inverter-based energy storage system[J]. IEEE Transactions on Sustainable Energy, 2020(99):1.
|
[20] |
陈虹. 模型预测控制[M]. 北京: 科学出版社, 2013.
|