电器与能效管理技术 ›› 2021, Vol. 0 ›› Issue (8): 24-30.doi: 10.16628/j.cnki.2095-8188.2021.08.005

• 研究与分析 • 上一篇    下一篇

基于方差比较的负荷曲线形态聚类研究

晏坤1, 甘景福1, 田新成1, 贺鹏康2, 马明晗2, 何宸1   

  1. 1.国网冀北电力有限公司 唐山供电公司, 河北 唐山 063000
    2.华北电力大学 电力工程系, 河北 保定 071000
  • 收稿日期:2021-02-12 出版日期:2021-08-30 发布日期:2021-10-14
  • 作者简介:晏坤(1988—),男,工程师,主要从事电网调度与负荷预测及电力设备故障识别研究。|甘景福(1973—),男,高级工程师,主要从事电网调度与运行维护检修管理技术研究。|田新成(1982—),男,高级工程师,主要从事网络与信息安全管理及电网调度自动化研究。
  • 基金资助:
    *国家电网有限公司科技项目(5201031801CR)

Research on Load Curve Shape Clustering Based on Variance Comparison

YAN Kun1, GAN Jingfu1, TIAN Xincheng1, HE Pengkang2, MA Minhan2, HE Chen1   

  1. 1. Tangshan Power Supply Company,State Grid Jibei Electric Power Co.,Ltd.,Tangshan 063000,China
    2. Department of Electric Power Engineering,North China Electric Power University,Baoding 071000,China
  • Received:2021-02-12 Online:2021-08-30 Published:2021-10-14

摘要:

传统的负荷曲线聚类方法一般基于欧氏距离,但形态不同的曲线相对同一聚类中心间可以有相同的欧氏距离,因此基于欧氏距离的聚类方法无法准确对曲线进行形态分类。针对传统欧氏距离聚类方法的不足,提出一种基于曲线方差比较的自适应形态聚类算法,以负荷曲线与聚类中心各点差值的方差作为聚类依据,从而实现基于曲线形态的分类研究。分析了传统基于欧氏距离的曲线聚类的原理及不足,介绍了所提基于方差比较的形态聚类的基本原理及相应的聚类中心更新方法,并基于模拟算例以及实际算例对两种聚类方法的曲线形态分类性能进行了对比和分析,分析结果表明所提曲线聚类方法在形态聚类方面有更好的性能,验证其可行性和有效性。

关键词: 电力负荷, 聚类分析, 方差, 曲线形态, 欧氏距离

Abstract:

The traditional load curves clustering method is generally based on Euclidean metric,but the curves with different shapes can have the equal Euclidean metric relative to the same clustering center.Therefore,the Euclidean metric based clustering method can not accurately classify the curves in morphology.Aiming at the this shortcomings,an adaptive shape clustering algorithm based on discrete curves variance comparison is proposed.The proposed method takes the variance of the difference between the load curve and the clustering center as the basis,to realize the classification based on the curve shape.In this paper,the principle and shortage of Euclidean metric based clustering method are analyzed,then the basic principle of shape clustering based on variance comparison and its corresponding clustering center updating method are detailed related.Based on the simulation and the actual examples,theses two clustering method are analyzed and compared with each others.The results show that the variance comparison based clustering algorithm has better performance on shape classification,the feasibility and validity of the proposed method are verified by the final analysis results.

Key words: electric load, cluster analysis, variance, curve shape, Euclidean metric

中图分类号: