LOW VOLTAGE APPARATUS ›› 2022, Vol. 0 ›› Issue (9): 1-7.doi: 10.16628/j.cnki.2095-8188.2022.09.001
• Overview • Next Articles
PENG Shi, WANG Chengmin
Received:2022-07-02
Online:2022-09-30
Published:2022-10-20
CLC Number:
PENG Shi, WANG Chengmin. A Review:Hybrid Energy Flow Analysis on Integrated Energy System[J]. LOW VOLTAGE APPARATUS, 2022, 0(9): 1-7.
| [1] | 王锡凡. 现代电力系统分析[M]. 北京: 科学出版社, 2015. |
| [2] |
MONTICELLI A, GARCIA A, SAAVEDRA O R. Fast decoupled load flow:hypothesis,derivations,and testing[J]. IEEE Transactions on Power Systems, 1990, 5(4):1425-1431.
doi: 10.1109/59.99396 |
| [3] | 孙健, 江道灼. 基于牛顿法的配电网络Zbus潮流计算方法[J]. 电网技术, 2004, 28(15):40-44. |
| [4] |
CHEN T H, CHEN M S, HWANG K J, et al. Distribution system power flow analysis-a rigid approach[J]. IEEE Transactions on Power Delivery, 1991, 6(3):1146-1152.
doi: 10.1109/61.85860 |
| [5] | 包志仁, 刘国华, 包根海. 给水管网平差环方程法的改进[J]. 浙江大学学报(工学版), 2000, 34(4):69-72. |
| [6] | 肖益民, 付祥钊. 环状供热管网水力计算方法探讨[J]. 重庆大学学报(自然科学版), 2005, 28(11):122-124. |
| [7] | 李祥立, 孙宗宇, 邹平华. 多热源环状热水管网的水力计算与分析[J]. 暖通空调, 2004, 34(7):97-101. |
| [8] | 王国明, 詹宇胜, 叶灵. 环状给水管网节点流量算法[J]. 合肥工业大学学报(自然科学版), 2003, 26(3):1208-1212. |
| [9] | 苏石, 孔繁德. 供热管道水力计算新方法——“节点平衡法”[J]. 煤炭技术, 2006, 25(10):119-120. |
| [10] | 李祥立, 王晓霞, 周志刚, 等. 枝状供热管网水力工况模拟分析[J]. 煤气与热力, 2004, 24(10):554-557. |
| [11] | 贺平, 孙刚. 供热工程[M]. 北京: 中国建筑工业出版社,1993. |
| [12] | GABRIELAITIENE I. Numerical simulation of a district heating system with emphases on transient temperature behaviour[C]// Environmental Engineering, 2011:747-754. |
| [13] | 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019. |
| [14] | 焦树建. 燃气蒸汽联合循环的理论基础[M]. 北京: 清华大学出版社, 2003. |
| [15] | GEIDL M. Integrated modelling and optimization of multicarrier energy systems[D]. Zurich: ETH Zurich, 2007. |
| [16] | SAVOLA T, KEPPO I. Off-design simulation and mathematical modeling of small-scale CHP plants at part loads[J]. Applied Thermal Engineering, 2005(25):1219-1232. |
| [17] | 孙宏宇, 张沛超, 杜炜, 等. 基于功率守恒原理的电热联合系统潮流计算方法[J]. 电力自动化设备, 2020, 40(11):54-60. |
| [18] | ZHANG G, ZHANG F, MENG K, et al. A fixed-point based distributed method for energy flow calculation in multi-energy systems[J]. IEEE Transaction on Sustainable Energy, 2020, 4(11):2567-2580. |
| [19] | 王英瑞, 曾博, 郭经, 等. 电-热-气综合能源系统多能流计算方法[J]. 电网技术, 2016, 10(40):2942-2950. |
| [20] | 徐宪东, 贾宏杰, 靳小龙, 等. 区域综合能源系统电/气/热混合潮流算法研究[J]. 中国电机工程学报, 2015, 14(35):3635-3624. |
| [21] | 张义斌. 天然气-电力混合系统分析方法研究[D]. 北京: 中国电力科学研究院, 2005. |
| [22] |
MASSRUR H R, NIKNAM T, AGHAEI J, et al. Fast decomposed energy flow in large-scale integrated electricity-gas-heat energy system[J]. IEEE Trans on Sustainable Energy, 2018, 9(4):1565-1577.
doi: 10.1109/TSTE.2018.2795755 |
| [23] | 夏天, 陈瑜玮, 郭庆来, 等. 基于PSASP 的电热耦合能源系统潮流计算[J]. 电力自动化设备, 2017, 6(37):55-61. |
| [24] | 孙国强, 王文学, 吴奕, 等. 辐射型电-热互联综合能源系统快速潮流计算方法[J]. 中国电机工程学报, 2020, 40(13):4131-4141. |
| [25] |
LIU X Z, WU J H, JENKINS N, et al. Combined analysis of electricity and heat networks[J]. Energy Procedia, 2014, 61:155-159.
doi: 10.1016/j.egypro.2014.11.928 |
| [26] | 王孟夏, 韩学山, 蒋哲, 等. 计及电热耦合的潮流数学模型与算法[J]. 电力系统自动化, 2008, 14(32):30-34. |
| [27] | 王孟夏, 韩学山, 杨朋朋, 等. 计及电热耦合的动态最优潮流模型与算法[J]. 电力系统自动化, 2016, 40(11):28-32. |
| [28] | 王孟夏, 韩学山, 黄金鑫, 等. 计及电缆热特性的电热耦合潮流计算[J]. 电力系统自动化, 2015, 19(39):73-79. |
| [29] | 舒隽, 关睿, 韩冰, 等. 考虑电热耦合效应的配电网潮流计算[J]. 电力系统自动化, 2015, 19(39):48-53. |
| [30] | 陈彬彬, 孙宏斌, 陈瑜玮, 等. 综合能源系统分析的统一能路理论(一):气路[J]. 电机工程学报, 2020, 40(2):436-443. |
| [31] |
YANG J, ZHANG N, BOTTERUD A, et al. On an equivalent representation of the dynamics in district heating networks for combined electricity-heat operation[J]. IEEE Transaction on Power Systems, 2020, 35(1):560-570.
doi: 10.1109/TPWRS.2019.2935748 |
| [32] | 陈彬彬, 孙宏斌, 尹冠雄, 等. 综合能源系统分析的统一能路理论(二):水路与热路[J]. 电机工程学报, 2020, 40(7):2133-2142. |
| [33] | DAI Y D, CHEN L, MIN Y, et al. Modeling and analysis of electrical heating system based on entransy dissipation-based thermal resistance theory[C]// 2016 IEEE Power and Energy Society General Meeting, 2016:17-21. |
| [34] | 王伟亮, 王丹, 贾宏杰, 等. 考虑天然气网络状态的电力-天然气区域综合能源系统稳态分析[J]. 中国电机工程学报, 2017, 37(5):1293-1304. |
| [35] |
GEIDL M, ANDERSSON G. Optimal power flow of multiple energy carriers[J]. IEEE Transaction on Power Systems, 2007, 22(1):145-155.
doi: 10.1109/TPWRS.2006.888988 |
| [36] |
ZHANG X P, SHAHIDEHPOUR M, ALABDUL-WAHAB A, et al. Optimal expansion planning of energy hub with multiple energy infrastructures[J]. IEEE transaction on smart grid, 2015, 6(5):2302-2311.
doi: 10.1109/TSG.2015.2390640 |
| [37] |
MUHAMMAD F T, CHEN H Y, KASHIF M, et al. Integrated energy system modeling of Chia for 2020 by incorporating demand response heat pump and thermal storage[J]. IEEE Access, 2019, 7:40095-40108.
doi: 10.1109/ACCESS.2019.2905684 |
| [38] | 王珺, 顾伟, 陆帅, 等. 结合热网模型的多区域综合能源系统协同规划[J]. 电力系统自动化, 2016, 40(15):17-24. |
| [39] | 胡浩, 王英瑞, 曾博, 等. 基于CVaR理论的综合能源系统经济优化调度[J]. 电力自动化设备, 2017, 37(6):209 -219. |
| [40] |
TIAN L, CHENG L, GUO J, et al. System modeling and optimal dispatching of multi-energy microgrid with energy storage[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(5):809-819.
doi: 10.35833/MPCE.2020.000118 |
| [41] |
LI Z, WU W, MOHAMMAD S, et al. Combined heat and power dispatch considering pipeline energy storage of district heating network[J]. IEEE Transaction on Sustainable Energy, 2016, 7(1):12-22.
doi: 10.1109/TSTE.2015.2467383 |
| [42] |
EDUARDO A M C, PIERLUIGI M. Energy systems integration in smart districts:robust optimisation of multi-energy flows in integrated electricity,heat and gas networks[J]. IEEE Transaction on Smart Grid, 2019, 10(1):1122-1131.
doi: 10.1109/TSG.2018.2828146 |
| [43] | MUNOZ J, JIMENEZ-REDONDO N, PEREZ-RUIZ J, et al. Natural gas network modeling for power systems reliability studies[C]// 2003 IEEE Bologna Power Tech Conference Proceedings, 2003, 4:1-25. |
| [44] |
任志超, 程超, 何仲潇, 等. 基于电热耦合潮流的综合能源系统风险评估方法[J]. 电力建设, 2018, 39(12):102-108.
doi: 10.3969/j.issn.1000-7229.2018.12.013 |
| [45] | 陈娟伟, 余涛, 许悦, 等. 气电耦合综合能源系统供电可靠性评估解析算法[J]. 电力系统自动化, 2018, 42(24):59-69. |
| [1] | LIU Zhaoxin, WANG Han, ZHANG Yunxiao, SONG Yikai, ZENG Bo, SUN Zhiquan. Research on Operation Optimization of Integrated Energy System in Industrial Park Considering Electricity-Gas Bidirectional Coupling [J]. LOW VOLTAGE APPARATUS, 2025, 0(3): 11-20. |
| [2] | JIANG Tao, ZHOU Huijuan, ZHANG Qimeng, ZHOU Weiran, XU Zhen. Economic Dispatch of Regional Integrated Energy System Based on Collaborative Optimization of Multi-Source Heat Pumps [J]. LOW VOLTAGE APPARATUS, 2024, 0(4): 13-21. |
| [3] | WU Fangzhu, TIAN Yuan. Design and Exploration of Integrated Energy System for Industrial Parks Based on Medium and Low Voltage AC/DC Distribution Networks [J]. LOW VOLTAGE APPARATUS, 2023, 0(6): 44-50. |
| [4] | JIANG Tao, RAN Fengxu, ZHOU Huijuan, ZHANG Qimeng, ZHANG Jinsong, ZHOU Weiran. Optimal Dispatch of Regional Integrated Energy System Considering Soil Heat Emission Balance [J]. LOW VOLTAGE APPARATUS, 2023, 0(11): 59-66. |
| [5] | JIANG Tao, ZHOU Huijuan, ZHOU Weiran, XU Zhen, ZHANG Jinsong. Optimal Dispatch of Regional Integrated Energy System Based on Source-Load Coordinated Peak Load Shaving [J]. LOW VOLTAGE APPARATUS, 2022, 0(9): 8-17. |
| [6] | MA Chunyan, DUAN Qing, SHA Guanglin, ZHAO Caihong, GAO Jian. Optimization Study of Integrated Energy System of Park Considering Grid Peak-Valley Suppression [J]. LOW VOLTAGE APPARATUS, 2021, 0(9): 19-26. |
| [7] | ZHAO Fengzhan, LI Qi, ZHANG Qicheng, WAN Zhongyang, SU Juan, WU Ming. Economic Optimal Scheduling of Integrated Energy Systems Considering Multi-Energy Complementary Supply Characteristics [J]. LOW VOLTAGE APPARATUS, 2021, 0(9): 45-50. |
| [8] | WAN Lixin, LU Limin, LU Huaigu, HAN Yuqian, GE Le. Optimal Operation Method of Electric-Hydrogen Integrated Energy System Based on Master-Slave Game [J]. LOW VOLTAGE APPARATUS, 2021, 0(7): 14-22. |
| [9] | GONG Ping, LUO Shuqi, ZHANG Yuanxin, ZHU Yongqiang, XIA Ruihua, DUAN Chunming. Technical Evaluation Index System for Integrated Energy System [J]. LOW VOLTAGE APPARATUS, 2021, 0(12): 28-33. |
| [10] | HUANG Tao, XU Zhipeng, GE Le. Optimal Scheduling of Hydrogen Energy Storage System Considering Random Characteristics of Wind Power Output [J]. DIANQI YU NENGXIAO GUANLI JISHU, 2020, 0(5): 72-77. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||