电器与能效管理技术 ›› 2023, Vol. 0 ›› Issue (10): 28-35.doi: 10.16628/j.cnki.2095-8188.2023.10.005

• 研究与分析 • 上一篇    下一篇

工业部门碳排放量的影响因素分解及预测方法研究

储琳琳1, 宗明1, 李沁愉1, 陈妍君1, 朱夏1, 刘亦婷2, 顾洁2   

  1. 1.国网上海市电力公司 市南供电公司, 上海 200030
    2.上海交通大学 电子信息与电气工程学院, 上海 200240
  • 收稿日期:2023-08-11 出版日期:2023-10-30 发布日期:2023-11-23
  • 作者简介:储琳琳(1978—),女,高级工程师,主要从事负荷预测和电网规划研究工作。|宗 明(1970—),男,高级工程师,主要从事电网规划与运行研究工作。|李沁愉(1988—),女,工程师,主要从事电网规划研究工作。
  • 基金资助:
    国家电网公司科技项目资助(SGSHSN00ZS2202767)

Research on Decomposition of Influencing Factors and Prediction Methods of Carbon Emissions in Industrial Sector

CHU Linlin1, ZONG Ming1, LI Qinyu1, CHEN Yanjun1, ZHU Xia1, LIU Yiting2, GU Jie2   

  1. 1. Shinan Power Supply Company State Grid Shanghai Electric Power Company, Shanghai 200030,China
    2. School of Electronic Information and Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240,China
  • Received:2023-08-11 Online:2023-10-30 Published:2023-11-23

摘要:

工业部门是全球主要的二氧化碳排放来源之一。了解工业部门碳排放量受何种因素影响,有助于针对性地制定优化措施减少碳排放量。同时,预测碳排放量,可以实现对未来碳排放量的管控和调整,并制定出相应的政策措施来引导和规范工业部门的发展。首先,通过对数平均迪氏指数(LMDI)分解法,构建行业碳排放贡献量的计算模型,分析各影响因素对碳排放的贡献量。进一步,结合因素分解法的分析结果,构建人口、财富、技术随机回归(STIRPAT)模型,对工业部门各行业碳排放量进行预测。最后,以我国某地区工业部门为例进行研究,结果验证了所提模型的可行性。

关键词: 碳排放, 碳排放贡献量, 影响因素分解, 对数平均迪氏指数分解法, 人口、财富、技术随机回归模型

Abstract:

The industrial sector is one of the main sources of global carbon dioxide emissions. Understanding the factors that affect carbon emissions in the industrial sector can help to develop the targeted optimization measures to reduce carbon emissions. Meanwhile, predicting carbon emissions can achieve to control and adjust future carbon emissions, and formulate the corresponding policy measures to guide and regulate the development of the industrial sector. Firstly, a calculation model of the industry's carbon emission contribution is coustructed through the logarithmic mean Divisia index (LMDI) decomposition method, and the contribution of various influencing factors to carbon emissions is analyzed. Further combining the analysis results of factor decomposition method, a stochastic impacts by regression on population, affluence and technology (STIRPAT) model is constructed to predict the carbon emissions of various industries in the industrial sector. Finally, a study is conducted on an industrial sector in a certain region of China, and the results verify the feasibility of the proposed model.

Key words: carbon emissions, carbon emission contribution, decomposition of influencing factors, logarithmic mean Divisia index(LMDI) decomposition method, stochastic impacts by regression on population, affluence and technology (STIRPAT) model

中图分类号: