电器与能效管理技术 ›› 2023, Vol. 0 ›› Issue (3): 1-10.doi: 10.16628/j.cnki.2095-8188.2023.03.001

• 研究与分析 •    下一篇

基于改进Q学习的虚拟电厂参与调峰辅助服务策略

陈聪磊1, 钟继涵1, 曹晓波2, 罗晓东3, 徐俊1   

  1. 1.国电南瑞科技股份有限公司, 江苏 南京 210032
    2.国网河北雄安新区供电公司, 河北 保定 071799
    3.国网雄安综合能源服务有限公司, 河北 保定 071800
  • 收稿日期:2022-08-21 出版日期:2023-03-30 发布日期:2023-04-11
  • 作者简介:陈聪磊(1986—),男,工程师,主要从事电力系统及其自动化、综合能源研究。|钟继涵(1995—),男,工程师,主要从事电力系统及其自动化、综合能源系统信息化建设研究。|曹晓波(1984—),男,高级工程师,主要从事综合能源、电力市场交易研究。
  • 基金资助:
    *国家自然科学基金项目(61633016)

Auxiliary Service Strategy of Virtual Power Plant Participating in Peak Shaving Based on Improved Q-Learning

CHEN Conglei1, ZHONG Jihan1, CAO Xiaobo2, LUO Xiaodong3, XU Jun1   

  1. 1. State Grid NARI Technology Co.,Ltd., Nanjing 210032, China
    2. State Grid Hebei Xiong’an New Area Electric Power Supply Company,Baoding 071799, China
    3. State Grid Xiong’an Integrated Energy Service Co.,Ltd., Baoding 071800, China
  • Received:2022-08-21 Online:2023-03-30 Published:2023-04-11

摘要:

新型电力系统推进建设中,大规模光伏并网及优先消纳可能会导致电网阻塞而加剧火电机组调峰压力,使其运行工况恶化和成本增加。为此提出虚拟电厂参与系统日前深度调峰辅助服务策略。首先,分析计算电动汽车群组成的虚拟电厂调峰特性和运行费用,并根据火电机组的煤耗和排放数据,计算供电煤耗和建立环保指标;其次,基于运行费用和指标,以火电机组调峰裕度为优化目标,运用模拟退火改进的Q学习求解机组深度调峰电量和分摊费用。算例结果表明,虚拟电厂参与系统调峰可提高调峰灵活性和降低运行费用,缓解火电机组调峰压力。

关键词: 虚拟电厂, 调峰辅助服务, 改进Q学习, 光伏消纳, 协调调度

Abstract:

In the construction of the new power system,the grid connection and preferential consumption of large-scale photovoltaic power may lead to grid congestion and aggravate the peak shaving pressure of thermal power units,which will worsen their operating conditions and increase their costs.Aiming at this problem,the virtual power plant participation system in the day-to-day in-depth peak shaving auxiliary service strategy is proposed.First,the peak shaving characteristics and operating costs of the virtual power plant composed of electric vehicle groups are analyzed and calculated.According to the coal consumption and emission data of thermal power units, the coal consumption for power supply is calculated and the environmental protection indicators are established.Secondly,based on the operating costs and indicators,taking the peak shaving margin of thermal power units as the optimization goal, the simulated annealing improved Q-learning is used to solve the deep peak shaving capacity and cost allocation. The results show that the participation of virtual power plants in system peak shaving can improve the flexibility of peak shaving, reduce operating costs, and relieve the peak shaving pressure of thermal power units.

Key words: virtual power plant, peak shaving auxiliary services, improved Q-learning, photovoltaic consumption, coordinated dispatching

中图分类号: