LOW VOLTAGE APPARATUS ›› 2022, Vol. 0 ›› Issue (11): 39-45.doi: 10.16628/j.cnki.2095-8188.2022.11.007
• System Detection & Protection • Previous Articles Next Articles
ZANG Wei, LINGHU Shaojiang, GE Shiwei
Received:
2022-05-23
Online:
2022-11-30
Published:
2023-01-04
CLC Number:
ZANG Wei, LINGHU Shaojiang, GE Shiwei. Research on Protection Devices for Short-Circuit Fault Current of DC Microgrid[J]. LOW VOLTAGE APPARATUS, 2022, 0(11): 39-45.
[1] |
LOTFIFI H, KHODAEI A. AC versus DC microgrid planning[J]. IEEE Transactions on Smart Grid, 2015, 8(1):296-304.
doi: 10.1109/TSG.2015.2457910 |
[2] | 刘鑫, 牟龙华, 王俊凯. 下垂控制微电源的故障控制策略及等效模型[J]. 电器与能效管理技术, 2020(8):1-6,11. |
[3] | 孔昱凯, 温步瀛, 朱振山, 等. 含储能的孤岛微电网日前-日内协调优化运行[J]. 电器与能效管理技术, 2021(2):65-74. |
[4] | 刘文亮. 直流微电网自适应两阶段下垂控制方法[J]. 电器与能效管理技术, 2021(8):58-63. |
[5] | 沈华, 陈葛亮, 林林, 等. 光储直流微电网控制器硬件在环仿真平台开发[J]. 电器与能效管理技术, 2020(5):62-66. |
[6] |
CAIROLI P, DOUGAL R A. New horizons in DC shipboard power systems:New fault protection strategies are essential to the adoption of dc power systems[J]. IEEE Electrific Magazine, 2013, 1(2):38-45.
doi: 10.1109/MELE.2013.2291431 |
[7] |
FOTOPOULOU M, RAKOPOULOS D, TRIGKAS D, et al. State of the art of low and medium voltage direct current (DC) microgrids[J]. Energies, 2021, 14(18):5595.
doi: 10.3390/en14185595 |
[8] | AUGUSTINE S, QUIROZ J E, RENO M J, et al. DC microgrid protection:review and challenges[R]. United States:Sandia National Laboratories, 2018. |
[9] |
PEREA-MENA B, VALENCIA-VELASQUEZ J A, LÓPEZ-LEZAMA J M, et al. Circuit breakers in low-and medium-voltage DC microgrids for protection against short-circuit electrical faults:Evolution and future challenges[J]. Applied Sciences, 2021, 12(1):15.
doi: 10.3390/app12010015 |
[10] |
YAQOBI M A, MATAYOSHI H, DANISH M S S, et al. Low-voltage solid-state DC breaker for fault protection applications in isolated DC microgrid cluster[J]. Applied Sciences, 2019, 9(4):723.
doi: 10.3390/app9040723 |
[11] |
LI X, SONG Q, LIU W, et al. Protection of non permanent faults on DC overhead lines in MMC-based HVDC systems[J]. IEEE Transaction on Power Delivery, 2013, 28(1):483-490.
doi: 10.1109/TPWRD.2012.2226249 |
[12] |
ZHOU Z, JIANG J, YE S, et al. Novel bidirectional O-Z-source circuit breaker for DC microgrid protection[J]. IEEE Transactions on Power Electronics, 2020, 36(2):1602-1613.
doi: 10.1109/TPEL.2020.3006889 |
[13] |
YANG Y, HUANG C, ZHAO Z, et al. A new bidirectional DC circuit breaker with fault decision-making capability for DC microgrid[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 9(3):2476-2488.
doi: 10.1109/JESTPE.2020.3023653 |
[14] | CHANDRA A, SINGH G K, PANT V. Protection techniques for DC microgrid-A review[J/OL]. https://doi.org/10.1016/j.epsr.2020.106439. |
[15] |
XU X, CHEN W, ZHANG S, et al. Design of an isolated circuit breaker with robust interruption capability for DC microgrid protection[J]. IEEE Transactions on Industrial Electronics, 2020, 68(12):12408-12417.
doi: 10.1109/TIE.2020.3039210 |
[16] | 李霞林, 郭力, 王成山, 等. 直流微电网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(1):2-17. |
[17] | WRIGHT A, NEWBERY P G. Electric Fuses[M]. London: Institution of Enginee and Technology, 2004. |
[18] | BHATIA R S. A review on protection devices and protection techniques for DC micro-grid[C]//Advances in Renewable Energy and Sustainable Environment, 2021:337-346. |
[19] | TIAN W, LEI C, ZHANG Y, et al. Data analysis and optimal specification of fuse model for fault study in power systems[C]//2016 IEEE Power and Energy Society General Meeting (PESGM), 2016:1-5. |
[20] |
DRAGIČEVIĆ T, LU X, VASQUEZ J C, et al. DC microgrids—Part II:A review of power architectures,applications,and standardization issues[C]IEEE transactions on power electronics, 2015, 31(5):3528-3549.
doi: 10.1109/TPEL.2015.2464277 |
[21] |
RAVYTS S, VAN DEN BROECK G, HALLEMANS L, et al. Fuse-based short-circuit protection of converter controlled low-voltage DC grids[J]. IEEE Transactions on Power Electronics, 2020, 35(11):11694-11706.
doi: 10.1109/TPEL.2020.2988087 |
[22] |
SOON J L, LU D D C. Design of fuse-MOSFET pair for fault-tolerant DC/DC converters[J]. IEEE Transactions on Power Electronics, 2016, 31(9):6069-6074.
doi: 10.1109/TPEL.2016.2535279 |
[23] | YIN F, SHEN B, ZHUANG J W. Research of uneven arc burning of parallel necks of DC fuse[C]//Journal of Physics:Conference Series.IOP Publishing, 2021, 1885(4):042024. |
[24] | 刘志远, 王彤, 孙超, 等. 石英砂熔断器的弧前时间-电流特性[J]. 高电压技术, 2018, 44(2):366-371. |
[25] |
BEHESHTAEIN S, CUZNER R, SAVAGHEBI M, et al. Review on microgrids protection[J]. IET Generation,Transmission & Distribution, 2019, 13(6):743-759.
doi: 10.1049/iet-gtd.2018.5212 |
[26] |
BAYATI N, BAGHAEE H R, HAJIZADEH A, et al. A fuse saving scheme for DC microgrids with high penetration of renewable energy resources[J]. IEEE Access, 2020, 8:137407-137417.
doi: 10.1109/ACCESS.2020.3012195 |
[27] |
ALAM M N, DAS B, PANT V. Optimum recloser-fuse coordination for radial distribution systems in the presence of multiple distributed generations[J]. IET Generation,Transmission & Distribution, 2018, 12(11):2585-2594.
doi: 10.1049/iet-gtd.2017.1532 |
[28] | BEHESHTAEIN S, CUZNER R M, FOROUZESH M, et al. DC microgrid protection:A comprehensive review[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019:1-1. |
[29] | 程显, 吴启亮, 冯元浩, 等. 基于“电压零休”的机械式直流断路器介质恢复特性研究[J]. 高压电器, 2021, 57(12):8. |
[30] | 荣命哲, 杨飞, 吴翊, 等. 直流断路器电弧研究的新进展[J]. 电工技术学报, 2014, 29(1):1-9. |
[31] | 李学琳, 蒋顾平, 施晓蓉. 提升直流塑壳断路器短路分断能力的设计研究[J]. 电器与能效管理技术, 2021 (7):45-50. |
[32] | 谢心意, 陈红影, 陈会林. 断路器的灭弧室:111900059 A[P]. 2020-11-06. |
[33] | 林新德, 王应波, 王耀国, 等. 单极或多极断路器:213716792 U[P]. 2021-07-16. |
[34] | 彭昊, 夏向阳, 杨银, 等. 基于耦合负压电路的混合式直流断路器拓扑研究[J]. 电气工程学报, 2020, 14(4):46-50. |
[35] | 何俊佳. 高压直流断路器关键技术研究[J]. 高电压技术, 2019, 45(8):2353-2361. |
[36] | QU L, YU Z, HUANG Y, et al. Research on effect of circuit parameters on breaking characteristics of mechanical DC circuit breaker[J]. Electric Power Systems Research, 2020, 179:106075.1-106075.8. |
[37] | WEN W, WANG Y, LI B, et al. Transient current interruption characteristics of a novel mechanical DC circuit breaker[J]. IEEE Transactions on Power Electronics, 2018, 33(11):9424-9431. |
[38] | KIM G W, CHOI H S. Comparison and analysis of impedance according to the winding method of superconducting element connected to DC circuit breaker[J]. IEEE Transactions on Applied Superconductivity, 2022, 32(6):1-5. |
[39] | 冯博宇. 应用于直流微电网的双向全固态直流断路器研究[D]. 武汉: 湖北工业大学. |
[40] | 屈鲁, 张翔宇, 陈政宇, 等. 适用于直流开断的 IGCT 串联均压技术[J]. 高电压技术, 2018, 44(2):409-416. |
[41] | 卢其威, 高志宣, 滕尚甫, 等. 基于 MOSFET 的限流式固态断路器及其过电压抑制[J]. 电工技术学报, 2018, 32(24):42-52. |
[42] | 李辉, 廖兴林, 肖洪伟, 等. 基于 SiC MOSFET 直流固态断路器关断初期电压尖峰抑制方法[J]. 电工技术学报, 2018, 33(5):1058-1067. |
[43] | 苟锐锋, 俞天毅, 孙广星, 等. 基于 RCD 与 MOV 的直流固态断路器缓冲电路优化分析与设计[J]. 高电压技术, 2019, 45(8):2418-2424. |
[44] | ZHOU Y, FENG Y, LIU T, et al. A digital-controlled SiC-based solid state circuit breaker with soft-start function for DC microgrids[C]//2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2018:1-7. |
[45] |
LI W, WANG Y, WU X, et al. A novel solid-state circuit breaker for on-board DC microgrid system[J]. IEEE Transactions on Industrial Electronics, 2018, 66(7):5715-5723.
doi: 10.1109/TIE.2018.2854559 |
[46] |
BREARLEY B J, PRABU R R. A review on issues and approaches for microgrid protection[J]. Renewable and Sustainable Energy Reviews, 2017, 67:988-997.
doi: 10.1016/j.rser.2016.09.047 |
[47] |
WANG Y, LI W, WU X, et al. A novel bidirectional solid-state circuit breaker for DC microgrid[J]. IEEE Transactions on Industrial Electronics, 2018, 66(7):5707-5714.
doi: 10.1109/TIE.2018.2878191 |
[48] |
WANG Y, DONG R, XU Z, et al. A coupled-inductor-based bidirectional circuit breaker for dc microgrid[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 9(3):2489-2499.
doi: 10.1109/JESTPE.2020.3016647 |
[49] | WANG L, FENG B, WANG Y, et al. Bidirectional short circuit breaker for DC microgrid based on segmented current limiting solid state circuit breaker[C]//2019 4th IEEE Workshop on the Electronic Grid (eGRID), 2019:1-8. |
[50] |
WANG L, FENG B, WANG Y, et al. Bidirectional short-circuit current blocker for DC microgrid based on solid-state circuit breaker[J]. Electronics, 2020, 9(2):306.
doi: 10.3390/electronics9020306 |
[51] |
SHUKLA A, DEMETRIADES G D. A survey on hybrid circuit-breaker topologies[J]. IEEE Transactions on Power Delivery, 2014, 30(2):627-641.
doi: 10.1109/TPWRD.2014.2331696 |
[52] | JAYAMAHA D, LIDULA N W A, RAJAPAKSE A D. Protection and grounding methods in DC microgrids:Comprehensive review and analysis[J/OL]. https://doi.org/10.1016/j.rser.2019.109631. |
[53] | 廖敏夫, 黄金强, 葛国伟, 等. 国内外混合式断路器发展与研究现状[J]. 高电压技术, 2016, 42(6):1688-1694. |
[54] | WANG J, PANG S, WU X, et al. Hybrid DC circuit breaker with integrated self-charging and current limiting:2022 8th International Conference on Electrical Engineering,Control and Robotics[C]. 2022. |
[55] | AJMAL C N M, RAGHAVENDRA I V, NAIK S, et al. A Modified Hybrid DC Circuit Breaker With Reduced Arc for Low Voltage DC Grids[J/OL]. https://doi.org/10.1016/j.rser.2019.109631. |
[56] | 葛国伟, 程显, 王华清, 等. 低压混合式直流断路器中真空电弧电流转移判据[J]. 电工技术学报, 2019, 34(19):4038-4047. |
[57] |
XUE S, LIU B, WANG S, et al. A modular hybrid DC circuit breaker with fault current self-adaptive control and protection coordination[J]. International Journal of Electrical Power & Energy Systems, 2022, 134:107434.
doi: 10.1016/j.ijepes.2021.107434 |
[1] | ZHENG Jiaxi, WANG Guoqing, LIN Boyong, LIU Chun, LIU Xun, ZANG Chunyan. Experimental Study on Low Current Fusing Characteristics of Fuse for Medium Voltage Transformer Protection [J]. LOW VOLTAGE APPARATUS, 2022, 0(7): 1-6. |
[2] | YANG Yang, SHI Guifeng, XU Xianqing. Analysis on High-Voltage Fuse Abnormal Fusing of 10 kV Potential Transformer in Internet Data Center [J]. LOW VOLTAGE APPARATUS, 2022, 0(4): 55-59. |
[3] | CHENG Da, ZHANG Penghe, XIONG Suqin, LI Qiuyang, ZHANG Zhaozi, GAO Caizhi. Overview of Novel LVDC Circuit Breaker Research [J]. LOW VOLTAGE APPARATUS, 2022, 0(11): 1-8. |
[4] | ZHAO Aqin. Fuse Temperature Simulation Calculation Based on Finite Element Analysis [J]. LOW VOLTAGE APPARATUS, 2022, 0(1): 63-66. |
[5] | WANG Guoqing, XIONG Jun, JIAO Xianan, LIU Chun, ZHANG Yan, LIU Xun. Study on Temperature Rise Characteristics of Outdoor 1 000 A Low Voltage Fuse [J]. LOW VOLTAGE APPARATUS, 2021, 0(6): 36-40. |
[6] | HE Qinglian, FAN Caiyun, LIU Kun. Research on Mechanical DC Circuit Breaker Based on Low Voltage Capacitor to Generate Resonant Current [J]. LOW VOLTAGE APPARATUS, 2020, 0(9): 24-29. |
[7] | CHEN Weizhong. Research on Self-Protection Strategy of DC Circuit Breaker Based on CT Zero Drift Criterion [J]. LOW VOLTAGE APPARATUS, 2020, 0(12): 28-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||