LOW VOLTAGE APPARATUS ›› 2021, Vol. 0 ›› Issue (7): 8-13.doi: 10.16628/j.cnki.2095-8188.2021.07.002
• Hydrogen Energy Storage Technology • Previous Articles Next Articles
SONG Xinfu1, JING Shibo1, ZHANG Hong2, YUAN Tiejiang2
Received:2021-02-03
Online:2021-07-30
Published:2021-10-13
CLC Number:
SONG Xinfu, JING Shibo, ZHANG Hong, YUAN Tiejiang. New Energy-Power to Hydrogen Capacity Two-Level Planning[J]. LOW VOLTAGE APPARATUS, 2021, 0(7): 8-13.
| [1] | 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3):1-15. |
| [2] |
GHASEMI-MARZBALI A. Multi-area multi-source automatic generation control in deregulated power system[J]. Energy, 2020, 201:117667.
doi: 10.1016/j.energy.2020.117667 |
| [3] | 郑广泛, 李琰, 娄雅馨, 等. 基于生产模拟的区域电网风电发展规划研究[J]. 电力电容器与无功补偿, 2021, 42(1):181-185. |
| [4] | 熊威, 任征东, 梅林, 等. 国外风电发展机制研究及对我国的启示[J]. 电力需求侧管理, 2016, 18(5):60-64. |
| [5] | 张红, 袁铁江, 谭捷. 统一能源系统氢负荷中长期预测[J]. 中国电机工程学报, 2021, 41(10):3364-3372. |
| [6] | 张红, 袁铁江, 谭捷, 等. 面向统一能源系统的氢能规划框架[J/OL]. 中国电机工程学报:1-12[2021-04-29]. https://doi.org/10.13334/j.02588013.pcsee. 201904. |
| [7] |
XU C B, KE Y M, LI Y B, et al. Data-driven configuration optimization of an off-grid wind/PV/hydrogen system based on modified NSGA-II and CRITIC-TOPSIS[J]. Energy Conversion and Management, 2020, 215:112892.
doi: 10.1016/j.enconman.2020.112892 |
| [8] |
HAMID H F, FATEMEH T, EDWARD R C, et al. Design and optimum energy management of a hybrid renewable energy system based on efficient various hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45(55):30113-30128.
doi: 10.1016/j.ijhydene.2020.08.040 |
| [9] |
ZHANG Y S, HUA Q S, LI S, et al. Life cycle optimization of renewable energy systems configuration with hybrid battery/hydrogen storage:a comparative study[J]. Journal of Energy Storage, 2020, 30:101470.
doi: 10.1016/j.est.2020.101470 |
| [10] | 李奇, 赵淑丹, 蒲雨辰, 等. 考虑电氢耦合的混合储能微电网容量配置优化[J]. 电工技术学报, 2021, 36(3):486-495. |
| [11] |
MOGHADDAM M H, KALAM A, NOWDEH S, et al. Optimal sizing and energy management of stand-alone hybrid photovoltaic/wind system based on hydrogen storage considering LOEE and LOLE reliability indices using flower pollination algorithm[J]. Renewable Energy, 2019, 135:1412-1434.
doi: 10.1016/j.renene.2018.09.078 |
| [12] |
BAGHAEE H R, MIRSALIM M, GHAREHPETIAN G B, et al. Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system[J]. Energy, 2016, 115(Part 1):1022-1041.
doi: 10.1016/j.energy.2016.09.007 |
| [13] |
DENG Z H, JIANG Y W. Optimal sizing of wind-hydrogen system considering hydrogen demand and trading modes[J]. International Journal of Hydrogen Energy, 2020, 45(20):11527-11537.
doi: 10.1016/j.ijhydene.2020.02.089 |
| [14] |
JIANG Y W, DENG Z H, YOU S . Size optimization and economic analysis of a coupled wind-hydrogen system with curtailment decisions[J]. International Journal of Hydrogen Energy, 2019, 44(36):19658-19666.
doi: 10.1016/j.ijhydene.2019.06.035 |
| [15] |
YATES J, DAIYAN R, PATTERSON R, et al. Techno-economic analysis of hydrogen electrolysis from off-grid stand-alone photovoltaics incorporating uncertainty analysis[J]. Cell Reports Physical Science, 2020, 1(10):100209.
doi: 10.1016/j.xcrp.2020.100209 |
| [16] |
AFZAL A, RAMIS M K. Multi-objective optimization of thermal performance in battery system using genetic and particle swarm algorithm combined with fuzzy logics[J]. Journal of Energy Storage, 2020, 32:101815.
doi: 10.1016/j.est.2020.101815 |
| [17] |
ZHANG W P, MALEKI A, ROSEN M A, et al. Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage[J]. Energy, 2018, 163:191-207.
doi: 10.1016/j.energy.2018.08.112 |
| [18] |
RAJESH P, SHAJIN F H . Optimal allocation of EV charging spots and capacitors in distribution network improving voltage and power loss by quantum-behaved and Gaussian mutational dragonfly algorithm (QGDA)[J]. Electric Power Systems Research, 2021, 194:107049.
doi: 10.1016/j.epsr.2021.107049 |
| [19] |
KHANALI M, AKRAM A, BEHZADI J, et al. Multi-objective optimization of energy use and environmental emissions for walnut production using imperialist competitive algorithm[J]. Applied Energy, 2021, 284:116342.
doi: 10.1016/j.apenergy.2020.116342 |
| [20] | 熊宇峰, 司杨, 郑天文, 等. 基于主从博弈的工业园区综合能源系统氢储能优化配置[J]. 电工技术学报, 2021, 36(3):507-516. |
| [21] |
LI B, ROCHE R, MIRAOUI A. Microgrid sizing with combined evolutionary algorithm and MILP unit commitment[J]. Applied Energy, 2017, 188:547-562.
doi: 10.1016/j.apenergy.2016.12.038 |
| [22] | 张安安, 张红, 李茜, 等. 电-气联合储能的海上微能系统模糊随机规划[J]. 中国电机工程学报, 2019, 39(20):5915-5925,6172. |
| [1] | ZHENG Zhen, MA Xiaoli, SHEN Xiaofeng, YAN Huamin, MA Taotao, YAN Zhan, XING Haijun. Robust Optimization Method of New Energy Accommodation in Flexible Interconnected Distribution Network Considering Network Reconfiguration [J]. LOW VOLTAGE APPARATUS, 2025, 0(3): 21-30. |
| [2] | GONG Weizheng. Research on Power Prediction Characteristics of New Energy Based on Sensitive Meteorological Feature Factor Screening and PSO-SVM Model Optimization [J]. LOW VOLTAGE APPARATUS, 2025, 0(3): 38-45. |
| [3] | HE Dongsheng, YANG Haijiang, HE Fawu, LUO Haiao, LU Jianjun, WANG Jixiang. New Energy Transformer Standardization System Status and Suggestions and Measures [J]. LOW VOLTAGE APPARATUS, 2024, 0(6): 1-7. |
| [4] | LI Jinwei, LI Tang, MAO Xingkui, ZHANG Zhe. Design of Type I Three-Level Energy Storage Converter [J]. LOW VOLTAGE APPARATUS, 2024, 0(4): 38-44. |
| [5] | QIAN Yongsheng. Safety Risk Assessment of Public Charging Infrastructure for New Energy Vehicles Based on F-score Scoring Method [J]. LOW VOLTAGE APPARATUS, 2024, 0(12): 63-68. |
| [6] | ZHANG Yan, DONG Jisheng, ZHANG Huajun, MENG Zhejian. Research on Low Inductance DC Testing Technology for New Energy Vehicle Electrical Appliances [J]. LOW VOLTAGE APPARATUS, 2023, 0(12): 60-64. |
| [7] | YIN Tianwen, GAO Xiaotian. Thoughts on Development of Low Voltage Electrical Apparatus Industry Under Carbon Peaking and Carbon Neutrality Background [J]. LOW VOLTAGE APPARATUS, 2023, 0(1): 1-7. |
| [8] | YIN Guangzhi, ZHENG Zhanghua, WANG Xin, ZHU Jiahui. Analysis on Development of Energy Storage Technology from Perspective of Energy Security [J]. LOW VOLTAGE APPARATUS, 2022, 0(5): 1-7. |
| [9] | LI Yu, ZHANG Hong, CUI Xiaobo, SUN Qianyi, JIA Hao, YUAN Bo, LI Taihua, WANG Heng, YUAN Tiejiang. Short-Long Term Coordinated Electric-Hydrogen Hybrid Energy Storage Capacity Optimization Planning [J]. LOW VOLTAGE APPARATUS, 2022, 0(5): 35-40. |
| [10] | WANG Yunhui, ZHENG Qiangren, GUO Miao, XIAO Huanchun, HE Houdao, CHEN Wanxi. Research on Control Strategy and Consumption Capacity Evaluation of Distributed Generation Access to Distribution Network [J]. LOW VOLTAGE APPARATUS, 2022, 0(4): 83-87. |
| [11] | FU Meiping, MAO Jianrong, SONG Rui, WANG Guanghui, FU Guobin. Voltage and Reactive Power Control Strategy of Energy Storage Power Stations in Large New Energy Enriched Areas [J]. LOW VOLTAGE APPARATUS, 2022, 0(2): 88-94. |
| [12] | JIANG Xiaofeng, CHANG Luyu, CHEN Jue, ZHANG Meng. Comprehensive Evaluation of Electrochemical Energy Storage Power Station for New Energy Consumption [J]. LOW VOLTAGE APPARATUS, 2021, 0(9): 40-44. |
| [13] | HONG Jianchao, LIN Guoqing. Zero Ripple High-Gain DC/DC Converter with Coupled Inductor [J]. LOW VOLTAGE APPARATUS, 2021, 0(2): 88-93. |
| [14] | ZHANG Bin, LIU Jie, QIU Gang, LIU Dagui, LI Guoqing, XIAO Guilian, HAO Hongyan. Contribution Evaluation and Sensitivity Analysis for New Energy Accomodation Key Factors [J]. LOW VOLTAGE APPARATUS, 2021, 0(11): 36-41. |
| [15] | ZHANG Zhong, XU Yuzhen. Zero Ripple High Gain Combined Sepic Converter Based on Coupled Inductor [J]. LOW VOLTAGE APPARATUS, 2021, 0(11): 73-79. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||