LOW VOLTAGE APPARATUS ›› 2023, Vol. 0 ›› Issue (10): 1-7.doi: 10.16628/j.cnki.2095-8188.2023.10.001
• Overview • Next Articles
LI Shaofei, WANG Zhaobin, ZHANG Wenhang
Received:2023-05-16
Online:2023-10-30
Published:2023-11-23
CLC Number:
LI Shaofei, WANG Zhaobin, ZHANG Wenhang. Review of Research on Remaining Useful Life Prediction of Relays Based on Deep Learning[J]. LOW VOLTAGE APPARATUS, 2023, 0(10): 1-7.
| [1] | 陆俭国, 王景芹, 陆宾. 电器可靠性工作概况与发展前景[J]. 低压电器, 2014(2):1-7. |
| [2] | 余琼, 任立, 翟国富. 航天继电器寿命试验技术的探讨[J]. 低压电器, 2008(21):60-62,65. |
| [3] | 乔维德. 电磁继电器剩余电寿命智能预测研究[J]. 电工电气, 2020(12):30-34. |
| [4] | 刘百鑫, 王召斌, 乔青云, 等. 基于深度学习的继电器寿命预测方法研究综述[J]. 电器与能效管理技术, 2021(12):1-6,33. |
| [5] | 刘惠, 刘振宇, 郏维强, 等. 深度学习在装备剩余使用寿命预测技术中的研究现状与挑战[J]. 计算机集成制造系统, 2021, 27(1):34-52. |
| [6] | 马东娟. 基于数据驱动的电器产品寿命预测方法研究[D]. 天津: 河北工业大学, 2016. |
| [7] | 许丽佳. 电子系统的故障预测与健康管理技术研究[D]. 西安: 电子科技大学, 2009. |
| [8] | 李久鑫, 王召斌, 朱佳淼. 继电器贮存可靠性研究方法综述[J]. 电器与能效管理技术, 2022(6):1-5,31. |
| [9] | 乔青云, 王召斌, 陈康宁, 等. 继电器贮存可靠性分析和加速退化试验综述[J]. 电器与能效管理技术, 2022(1):1-6. |
| [10] | 孙训俊. 电器产品贮存寿命分析方法的研究[D]. 天津: 河北工业大学, 2014. |
| [11] | 王召斌, 蔡昭文, 翟国富, 等. 航天继电器加速贮存退化可靠性建模和统计分析[J]. 低压电器, 2012(17):1-7. |
| [12] | 苗建伟, 王文军, 李斌. 低压继电器寿命的智能预测分析[J]. 电器与能效管理技术, 2018(4):61-65. |
| [13] |
PARIS P, ERDOGAN F. A critical Analysis of Crack Propagation Laws[J]. Journal of Basic Engineering, 1963, 85(4):528-533.
doi: 10.1115/1.3656900 |
| [14] | 季文强. 基于深度学习和不确定性量化的数据驱动剩余寿命预测方法研究[D]. 合肥: 中国科学技术大学, 2020. |
| [15] |
WANG Z Q, HU C H, FAN H D. Real-time remaining useful life prediction for a nonlinear degrading system in service:application to bearing data[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1):211-222.
doi: 10.1109/TMECH.3516 |
| [16] | PANDEY M D, YUAN X X, VAN NOORTWIJK J M. The influence of temporal uncertainty of deterioration on life-cycle management of structures[J]. Structure & Infrastructure Engineering, 2009, 5(2):145-156. |
| [17] |
KHAROUFEH J P. Explicit results for wear processes in a Markovian environment[J]. Operations Research Letters, 2003, 31(3):237-244.
doi: 10.1016/S0167-6377(02)00229-8 |
| [18] |
GEBRAEEL N Z, LAWLEY M A, RONG L I. Residual-life distributions from component degradation signals:A Bayesian approach[J]. IIE Transactions, 2005, 37(6):543-557.
doi: 10.1080/07408170590929018 |
| [19] | 李雅. 基于数据驱动的航空发动机剩余寿命预测研究[D]. 郑州: 河南大学, 2022. |
| [20] |
裴洪, 胡昌华, 司小胜, 等. 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报, 2019, 55(8):1-13.
doi: 10.3901/JME.2019.08.001 |
| [21] | SIKORSKA J Z, HODKIEWICZ M, MA L. Prognostic modelling options for remaining useful life estimation by industry[J]. Mechanical Systems & Signal Processing, 2011, 25(5):1803-1836. |
| [22] |
LIAO H, TIAN Z. A framework for predicting the remaining useful life of a single unit under time-varying operating conditions[J]. IIE Transactions, 2013, 45(9):964-980.
doi: 10.1080/0740817X.2012.705451 |
| [23] |
WANG W B, CARR M, XU W J, et al. A model for residual life prediction based on Brownian motion with an adaptive drift[J]. Microelectronics and reliability, 2011, 51(1):285-293.
doi: 10.1016/j.microrel.2010.09.013 |
| [24] |
BEZAZI A, PIERCE S G, WORDEN K. Fatigue life prediction of sandwich composite materials under flexural tests using a Bayesian trained artificial neural network[J]. International Journal of Fatigue, 2007, 29(4):738-747.
doi: 10.1016/j.ijfatigue.2006.06.013 |
| [25] |
PIERCE S G, WORDEN K, BEZAZI A. Uncertainty analysis of a neural network used for fatigue lifetime prediction[J]. Mechanical Systems and Signal Processing, 2008, 22(6):1395-1411.
doi: 10.1016/j.ymssp.2007.12.004 |
| [26] |
MITRENTSIS G, LENS H. Data-driven dynamic models of active distribution networks using unsupervised learning techniques on field measurements[J]. IEEE Transactions on Smart Grid, 2021, 12(4):2952-2965.
doi: 10.1109/TSG.2021.3057763 |
| [27] |
BAO Y, TANG Z, LI H, et al. Computer vision and deep learning-based data anomaly detection method for structural health monitoring[J]. Structural Health Monitoring, 2019, 18(2):401-421.
doi: 10.1177/1475921718757405 |
| [28] |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science (New York,N.Y.), 2006, 313(5786):504-507.
doi: 10.1126/science.1127647 |
| [29] | 刘嘉. 多目标演化深度神经网络模型与应用[D]. 西安: 西安电子科技大学, 2019. |
| [30] | BABU G S, ZHAO P, LI X L. Deep convolutional neural network based regression approach for estimation of remaining useful life[C]// International Conference on Database Systems for Advanced Applications, 2016. |
| [31] | 崔和臣. 交流接触器电寿命预测的深度学习模型及实验[D]. 温州: 温州大学, 2019. |
| [32] | 曹宇. 基于深度循环网络的舰船位置预测方法研究[D]. 南京: 南京邮电大学, 2022. |
| [33] | 张露, 颜宏文, 马瑞. 基于改进DBSCAN-RNN的电力负荷建模及可调特征提取[J]. 智慧电力, 2023, 51(3):39-45.. |
| [34] | HOCHREITER S, SCHMIDHVBE R. LSTM can solve hard long time lag problems[C]// Advances in Newral Information Processing System 9, 1996:473-479. |
| [35] | 韩忠华, 黎恺嘉, 陈赵琦, 等. 改进的门控循环单元模型研究与应用[J]. 计算机仿真, 2022, 39(12):429-435,541. |
| [36] |
MUGHEE N, MOHSIN S A, MUGHEES A, et al. Deep sequence to sequence Bi-LSTM neural networks for day-ahead peak load forecasting[J]. Expert Systems with Applications, 2021, 175:114844.
doi: 10.1016/j.eswa.2021.114844 |
| [37] | 高士珍. 基于深度学习的交流接触器剩余寿命预测研究[D]. 沈阳: 沈阳工业大学, 2022. |
| [38] | 陈自强. 基于LSTM网络的设备健康状况评估与剩余寿命预测方法的研究[D]. 合肥: 中国科学技术大学, 2019. |
| [1] | YU Qiang, LI Xinye, ZHAO Yingying, ZHENG Tianyun, ZHOU Yanhua, WU Sipei. Research on Quick Calibration System of Thermal Overload Relay [J]. LOW VOLTAGE APPARATUS, 2025, 0(8): 39-44. |
| [2] | OU Changjiang, YANG Zhengnan. Design of High Power Density Radiation-Hardened POL Power Supply [J]. LOW VOLTAGE APPARATUS, 2025, 0(6): 44-50. |
| [3] | CHEN Jun, YANG Nan, ZHAO Chengwei, WU Shengxiu, ZENG Qinwu. Research on Optimization of Stabilization Treatment Process Methods for Electromagnetic Relay [J]. LOW VOLTAGE APPARATUS, 2025, 0(6): 56-59. |
| [4] | ZHANG Linliang, CHEN Jianyi, ZHENG Xubin, LIU Xiangjun. Development and Application of Electromagnetic System Simulation Analysis Platform for Magnetic Latching Relay [J]. LOW VOLTAGE APPARATUS, 2025, 0(6): 69-77. |
| [5] | SONG Biying, CAI Zhiyuan. Prediction of Remaining Useful Life of Switches Based on Voiceprint [J]. LOW VOLTAGE APPARATUS, 2025, 0(3): 54-63. |
| [6] | YANG Xinyu, WU Chengchuang, HE Yubin, ZHANG Chao, REN Wanbin. Research on Contact Resistance Degradation Mechanisms of Relay with Contact Bridge Structure Under Continuous Current Loading [J]. LOW VOLTAGE APPARATUS, 2025, 0(2): 1-5. |
| [7] | ZHANG Yongjian, YOU Jiaxin, WU Di, XUE Yutong, GONG Shijia, ZHAN Xiaoyu. Research on Method of Improving Load Capacity Within Limited Volume of Crystal Cover Sealed Electromagnetic Relay [J]. LOW VOLTAGE APPARATUS, 2025, 0(2): 15-23. |
| [8] | GU Zhihao, WU Chengchuang, ZHANG Chao, HE Yubin, REN Wanbin. Research on Life Prediction Models of HVDC Contactors [J]. LOW VOLTAGE APPARATUS, 2025, 0(1): 1-5. |
| [9] | XU Jianing, YANG Haowen, GAO Caizhi, CHEN Silei, LI Xingwen. Life Prediction Method of Low Voltage Circuit Breaker Based on Arc Energy Estimation [J]. LOW VOLTAGE APPARATUS, 2025, 0(1): 6-13. |
| [10] | YUAN Juan, CHEN Zhenghao, ZHENG Lianqing. Study on Life Prediction of Photovoltaic Inverter Based on Mission Profile [J]. LOW VOLTAGE APPARATUS, 2024, 0(9): 1-7. |
| [11] | LIN Zhen, ZHANG Peng, LIU Xiangjun. Study on Arc Reignition Influencing Factors of HVDC Relay Under Permanent Magnet Field [J]. LOW VOLTAGE APPARATUS, 2024, 0(8): 34-44. |
| [12] | MA Dongkun, WANG Zhaobin, HE Tianyang. A Comprehensive Review of Electromagnetic Relay Remaining Useful Life Prediction Methods [J]. LOW VOLTAGE APPARATUS, 2024, 0(7): 1-8. |
| [13] | SHI Lei, WU Duanjian, LIAO Yushen, WU Yuanjin. Study on Properties of Pure Iron and Soft Magnetic Material of Relay and Selection of Heat Treatment Process [J]. LOW VOLTAGE APPARATUS, 2024, 0(7): 60-64. |
| [14] | CUI Xiangqian, YOU Jiaxin, DING Ding, XUE Yutong, SHI Libing, TIAN Cong. Research on Analysis Method of Multi-Physical Fields Bidirectional Interaction Coupling in HSER [J]. LOW VOLTAGE APPARATUS, 2024, 0(7): 9-18. |
| [15] | DUAN hongliang. Research on Reliability Evaluation Method for Safety Related Relays of Urban Rail Vehicles Without Failure Data [J]. LOW VOLTAGE APPARATUS, 2024, 0(6): 59-63. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||