LOW VOLTAGE APPARATUS ›› 2023, Vol. 0 ›› Issue (10): 1-7.doi: 10.16628/j.cnki.2095-8188.2023.10.001
• Overview • Next Articles
LI Shaofei, WANG Zhaobin, ZHANG Wenhang
Received:
2023-05-16
Online:
2023-10-30
Published:
2023-11-23
CLC Number:
LI Shaofei, WANG Zhaobin, ZHANG Wenhang. Review of Research on Remaining Useful Life Prediction of Relays Based on Deep Learning[J]. LOW VOLTAGE APPARATUS, 2023, 0(10): 1-7.
[1] | 陆俭国, 王景芹, 陆宾. 电器可靠性工作概况与发展前景[J]. 低压电器, 2014(2):1-7. |
[2] | 余琼, 任立, 翟国富. 航天继电器寿命试验技术的探讨[J]. 低压电器, 2008(21):60-62,65. |
[3] | 乔维德. 电磁继电器剩余电寿命智能预测研究[J]. 电工电气, 2020(12):30-34. |
[4] | 刘百鑫, 王召斌, 乔青云, 等. 基于深度学习的继电器寿命预测方法研究综述[J]. 电器与能效管理技术, 2021(12):1-6,33. |
[5] | 刘惠, 刘振宇, 郏维强, 等. 深度学习在装备剩余使用寿命预测技术中的研究现状与挑战[J]. 计算机集成制造系统, 2021, 27(1):34-52. |
[6] | 马东娟. 基于数据驱动的电器产品寿命预测方法研究[D]. 天津: 河北工业大学, 2016. |
[7] | 许丽佳. 电子系统的故障预测与健康管理技术研究[D]. 西安: 电子科技大学, 2009. |
[8] | 李久鑫, 王召斌, 朱佳淼. 继电器贮存可靠性研究方法综述[J]. 电器与能效管理技术, 2022(6):1-5,31. |
[9] | 乔青云, 王召斌, 陈康宁, 等. 继电器贮存可靠性分析和加速退化试验综述[J]. 电器与能效管理技术, 2022(1):1-6. |
[10] | 孙训俊. 电器产品贮存寿命分析方法的研究[D]. 天津: 河北工业大学, 2014. |
[11] | 王召斌, 蔡昭文, 翟国富, 等. 航天继电器加速贮存退化可靠性建模和统计分析[J]. 低压电器, 2012(17):1-7. |
[12] | 苗建伟, 王文军, 李斌. 低压继电器寿命的智能预测分析[J]. 电器与能效管理技术, 2018(4):61-65. |
[13] |
PARIS P, ERDOGAN F. A critical Analysis of Crack Propagation Laws[J]. Journal of Basic Engineering, 1963, 85(4):528-533.
doi: 10.1115/1.3656900 |
[14] | 季文强. 基于深度学习和不确定性量化的数据驱动剩余寿命预测方法研究[D]. 合肥: 中国科学技术大学, 2020. |
[15] |
WANG Z Q, HU C H, FAN H D. Real-time remaining useful life prediction for a nonlinear degrading system in service:application to bearing data[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1):211-222.
doi: 10.1109/TMECH.3516 |
[16] | PANDEY M D, YUAN X X, VAN NOORTWIJK J M. The influence of temporal uncertainty of deterioration on life-cycle management of structures[J]. Structure & Infrastructure Engineering, 2009, 5(2):145-156. |
[17] |
KHAROUFEH J P. Explicit results for wear processes in a Markovian environment[J]. Operations Research Letters, 2003, 31(3):237-244.
doi: 10.1016/S0167-6377(02)00229-8 |
[18] |
GEBRAEEL N Z, LAWLEY M A, RONG L I. Residual-life distributions from component degradation signals:A Bayesian approach[J]. IIE Transactions, 2005, 37(6):543-557.
doi: 10.1080/07408170590929018 |
[19] | 李雅. 基于数据驱动的航空发动机剩余寿命预测研究[D]. 郑州: 河南大学, 2022. |
[20] |
裴洪, 胡昌华, 司小胜, 等. 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报, 2019, 55(8):1-13.
doi: 10.3901/JME.2019.08.001 |
[21] | SIKORSKA J Z, HODKIEWICZ M, MA L. Prognostic modelling options for remaining useful life estimation by industry[J]. Mechanical Systems & Signal Processing, 2011, 25(5):1803-1836. |
[22] |
LIAO H, TIAN Z. A framework for predicting the remaining useful life of a single unit under time-varying operating conditions[J]. IIE Transactions, 2013, 45(9):964-980.
doi: 10.1080/0740817X.2012.705451 |
[23] |
WANG W B, CARR M, XU W J, et al. A model for residual life prediction based on Brownian motion with an adaptive drift[J]. Microelectronics and reliability, 2011, 51(1):285-293.
doi: 10.1016/j.microrel.2010.09.013 |
[24] |
BEZAZI A, PIERCE S G, WORDEN K. Fatigue life prediction of sandwich composite materials under flexural tests using a Bayesian trained artificial neural network[J]. International Journal of Fatigue, 2007, 29(4):738-747.
doi: 10.1016/j.ijfatigue.2006.06.013 |
[25] |
PIERCE S G, WORDEN K, BEZAZI A. Uncertainty analysis of a neural network used for fatigue lifetime prediction[J]. Mechanical Systems and Signal Processing, 2008, 22(6):1395-1411.
doi: 10.1016/j.ymssp.2007.12.004 |
[26] |
MITRENTSIS G, LENS H. Data-driven dynamic models of active distribution networks using unsupervised learning techniques on field measurements[J]. IEEE Transactions on Smart Grid, 2021, 12(4):2952-2965.
doi: 10.1109/TSG.2021.3057763 |
[27] |
BAO Y, TANG Z, LI H, et al. Computer vision and deep learning-based data anomaly detection method for structural health monitoring[J]. Structural Health Monitoring, 2019, 18(2):401-421.
doi: 10.1177/1475921718757405 |
[28] |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science (New York,N.Y.), 2006, 313(5786):504-507.
doi: 10.1126/science.1127647 |
[29] | 刘嘉. 多目标演化深度神经网络模型与应用[D]. 西安: 西安电子科技大学, 2019. |
[30] | BABU G S, ZHAO P, LI X L. Deep convolutional neural network based regression approach for estimation of remaining useful life[C]// International Conference on Database Systems for Advanced Applications, 2016. |
[31] | 崔和臣. 交流接触器电寿命预测的深度学习模型及实验[D]. 温州: 温州大学, 2019. |
[32] | 曹宇. 基于深度循环网络的舰船位置预测方法研究[D]. 南京: 南京邮电大学, 2022. |
[33] | 张露, 颜宏文, 马瑞. 基于改进DBSCAN-RNN的电力负荷建模及可调特征提取[J]. 智慧电力, 2023, 51(3):39-45.. |
[34] | HOCHREITER S, SCHMIDHVBE R. LSTM can solve hard long time lag problems[C]// Advances in Newral Information Processing System 9, 1996:473-479. |
[35] | 韩忠华, 黎恺嘉, 陈赵琦, 等. 改进的门控循环单元模型研究与应用[J]. 计算机仿真, 2022, 39(12):429-435,541. |
[36] |
MUGHEE N, MOHSIN S A, MUGHEES A, et al. Deep sequence to sequence Bi-LSTM neural networks for day-ahead peak load forecasting[J]. Expert Systems with Applications, 2021, 175:114844.
doi: 10.1016/j.eswa.2021.114844 |
[37] | 高士珍. 基于深度学习的交流接触器剩余寿命预测研究[D]. 沈阳: 沈阳工业大学, 2022. |
[38] | 陈自强. 基于LSTM网络的设备健康状况评估与剩余寿命预测方法的研究[D]. 合肥: 中国科学技术大学, 2019. |
[1] | LI Min, CHEN Ping. Modelingand Simulation Analysis of New High-Power DC Relays [J]. LOW VOLTAGE APPARATUS, 2023, 0(8): 10-16. |
[2] | ZHU Jiamiao, WANG Zhaobin, LI Jiuxin. Prediction of Storage Life of Aerospace Electromagnetic Relay Based on POA Optimization Support Vector Regression Model [J]. LOW VOLTAGE APPARATUS, 2023, 0(8): 61-67. |
[3] | WEI Xinqi, ZHANG Chenyu, MIAO Huiyu, CHEN Shu. Research on Non-Intrusive Load Identification Method Based on Multi-Feature Fusion [J]. LOW VOLTAGE APPARATUS, 2023, 0(7): 55-60. |
[4] | ZHOU Kai, WANG Xiaodong, WANG Gang, LIU Guangwei, LIU Yingming. Fault Diagnosis Method of Early Inter-Turn Short Circuit of Permanent Magnet Synchronous Wind Turbine Based on Attention Mechanism [J]. LOW VOLTAGE APPARATUS, 2023, 0(6): 1-8. |
[5] | QIAO Yufei, YOU Jiaxin, JIN Xinyu, TU Rui, TAO Ziqi, ZHAI Guofu. Research on Promotion Method of Adjustment-Free Rate for Batch Products Based on Kriging Model and Variation Function [J]. LOW VOLTAGE APPARATUS, 2023, 0(5): 15-24. |
[6] | XIE Yashuang, BAO Guanghai. Simulation Analysis on Dynamic Characteristics of AC Relay Arc [J]. LOW VOLTAGE APPARATUS, 2023, 0(4): 28-33. |
[7] | ZHU Jinbao. Research On Low Power Consumption Magnetic Latching Relay [J]. LOW VOLTAGE APPARATUS, 2023, 0(4): 56-60. |
[8] | QIAO Qingyun, WANG Zhaobin, LIU Baixin, CHEN Kangning. Research on Storage Life Prediction of Electromagnetic Relay Based on WOA-SVM Model [J]. LOW VOLTAGE APPARATUS, 2023, 0(2): 1-5. |
[9] | HU Fengming, TANG Jiabin, XIAO Jing, CHEN Weizhi, CHEN Guanlin. Analysis on Loop Detuning Characteristics of Multi-Relay Wireless Power Transfer System [J]. LOW VOLTAGE APPARATUS, 2023, 0(2): 44-52. |
[10] | MA Hangyu, LIANG Huimin, CHEN Hao, LUO Fubiao, ZHOU Zhefeng, FENG Keyun. Design of Automatic Testing System for Contact Parameters of 1/2 Crystal Cover Sealed Relay [J]. LOW VOLTAGE APPARATUS, 2023, 0(10): 54-60. |
[11] | ZHAO Yong, WU Duanjian, LIU Lei. 1D Simulation and Experiment for Dynamic Characteristic of Magnetic Latching Relay [J]. LOW VOLTAGE APPARATUS, 2023, 0(10): 76-80. |
[12] | SHI Jian, ZHOU Zhaoqing, YUE Feng. Analysis of Relay Contact Sticking Fault in Circuit Breaker Control System [J]. LOW VOLTAGE APPARATUS, 2023, 0(1): 69-72. |
[13] | ZHENG Jinbo, ZHENG Lejiang, YAN Xiangkun. Research and Application of Testing Device for Comprehensive Performance of External Circuit Breaker [J]. LOW VOLTAGE APPARATUS, 2023, 0(1): 78-83. |
[14] | LI Jiuxin, WANG Zhaobin, ZHU Jiamiao. Review on Research Methods of Relay Storage Reliability [J]. LOW VOLTAGE APPARATUS, 2022, 0(6): 1-5. |
[15] | LIU Guilin, LIANG Huimin, WEI Zitong, CHEN Junfeng, DENG Liming, ZOU Liang. Research on Virtual Prototype Model of Electromagnetic Relay with Bridge Polarized Magnetic System and Influence of Armature Position Deviation [J]. LOW VOLTAGE APPARATUS, 2022, 0(6): 32-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||