LOW VOLTAGE APPARATUS ›› 2024, Vol. 0 ›› Issue (2): 56-65.doi: 10.16628/j.cnki.2095-8188.2024.02.010
• Detection & Text • Previous Articles Next Articles
SHA Haoyuan, LIU Pei, WANG Zhihe, SUN Yi, ZHAO He, DENG Kai, ZHU Chao
Received:
2023-09-15
Online:
2024-02-28
Published:
2024-03-28
CLC Number:
SHA Haoyuan, LIU Pei, WANG Zhihe, SUN Yi, ZHAO He, DENG Kai, ZHU Chao. Research on Fault Diagnosis Method of High Voltage Circuit Breaker Based on Convolution Prototype Network[J]. LOW VOLTAGE APPARATUS, 2024, 0(2): 56-65.
对比指标 | 故障类型 | 方法一 (DBN+TL) | 方法二 (特征聚类法) | 方法三 (本文方法) | |
---|---|---|---|---|---|
轮廓系数 | 平均值 | F11 | 0.94 | 0.94 | 0.97 |
F21 | 0.97 | 0.86 | 0.97 | ||
F22 | 0.81 | 0.75 | 0.97 | ||
F23 | 0.63 | 0.72 | 0.98 | ||
F31 | 0.94 | 0.95 | 0.98 | ||
F32 | 0.98 | 0.93 | 0.98 | ||
最小值 | F11 | 0.86 | 0.90 | 0.95 | |
F21 | 0.90 | 0.73 | 0.93 | ||
F22 | 0.61 | 0.37 | 0.95 | ||
F23 | -0.32 | -0.63 | 0.95 | ||
F31 | 0.91 | 0.89 | 0.94 | ||
F32 | 0.94 | 0.87 | 0.96 | ||
识别 正确率/% | F11 | 100 | 100 | 100 | |
F21 | 100 | 100 | 100 | ||
F22 | 90.0 | 90.0 | 100 | ||
F23 | 86.7 | 83.3 | 100 | ||
F31 | 100 | 100 | 100 | ||
F32 | 100 | 100 | 100 | ||
平均正确率/% | 96.1 | 95.6 | 100 | ||
未知类识别正确率/% | — | 90 | 100 |
[1] |
RAZI-KAZEMI A A, VAKILIAN M, NIAYESH K, et al. Priority assessment of online monitoring investment for power system circuit breakers-part I:qualitative-quantitative approach[J]. IEEE Transactions on Power Delivery, 2013, 28(2):928-938.
doi: 10.1109/TPWRD.2013.2243921 |
[2] | 赵莉华, 付荣荣, 荣强, 等. 基于自适应神经模糊推理系统的高压断路器操作机构状态评估[J]. 高电压技术, 2017, 43(6):2007-2015. |
[3] | 钟声, 李晓洋, 梁胜乐, 等. 基于线圈电流信号及动态时间规整的高压断路器状态评估方法[J]. 高压电器, 2023, 59(4):24-31. |
[4] | 孙曙光, 张强, 杜太行, 等. 基于振动信号的低压万能式断路器分合闸故障程度评估方法的研究[J]. 中国电机工程学报, 2017, 37(18):5473-5482. |
[5] | 赵书涛, 马莉, 朱继鹏, 等. 基于CEEMDAN样本熵与FWA-SVM 的高压断路器机械故障诊断[J]. 电力自动化设备, 2020, 40(3):181-186. |
[6] | 黄新波, 许艳辉, 朱永灿. 基于混合分类器的高压断路器故障诊断[J]. 高压电器, 2022, 58(10):149-157. |
[7] | 杨秋玉, 阮江军, 张灿, 等. 基于定量递归分析的高压断路器机械缺陷辨识及应用[J]. 电工技术学报, 2020, 35(18):3848-3859. |
[8] | 廖斌, 梁晨, 陈松, 等. 一起35kV并联电容器装置故障原因分析[J]. 电力电容器与无功补偿, 2022, 43(5):1-6. |
[9] | RAOP, HUANG J, HU X G, et al. Testing of circuit breakers using coil current characteristics analysis[C]// IEEE Control Autom.Conf., 2009:185-189. |
[10] | JOHAL H, MOUSAVI M J. Coil current analysis method for predictive maintenance of circuit breakers[C]// IEEE/PES Transmission Distribution Conference, 2008:1-7. |
[11] | HU X G, CHAO L. Research on the condition parameter tester of high voltage circuit breakers[C]// EEE Conference on Industrial Electronics & Applications, 2008:2389-2393. |
[12] |
RAZI-KAZEMI A A, VAKILIANM, NIAYESH K, et al. Circuit-breaker automated failure tracking based on coil current signature[J]. IEEE Trans Power Deliv, 2014, 29(1):283-290.
doi: 10.1109/TPWRD.2013.2276630 |
[13] |
NATTI S, KEZUNOVIC M. Assessing circuit breaker performance using condition-based data and Bayesian approach[J]. Electric Power Systems Research, 2011, 81(9):1796-1804.
doi: 10.1016/j.epsr.2011.04.010 |
[14] | KEZUNOVIC M, NATTI S. Risk-based maintenance approach:a case of circuit breaker condition-based monitoring:3rd international CIGRE workshop on liberalization and modernization of power systems[C]. 2006. |
[15] | 靳文娟, 季天瑶, 唐文虎. 基于多参量的高压断路器分/合闸线圈的故障诊断[J]. 高压电器, 2019, 55(3):226-233. |
[16] | 周小娜. 10 kV智能高压真空断路器在线监测系统研究与设计[D]. 厦门: 厦门理工学院, 2016. |
[17] | 张佳, 陈志英, 陈丽安, 等. 基于改进集合模态分解的真空断路器分合闸线圈电流特征值提取[J]. 高压电器, 2020, 56(12):116-123. |
[18] | 梅飞, 梅军, 郑建勇, 等. 粒子群优化的KFCM及SVM诊断模型在断路器故障诊断中的应用[J]. 中国电机工程学报, 2013, 33(36):134-141,19. |
[19] | 梅飞, 梅军, 郑建勇, 等. 基于KPCA-SVM的断路器故障稳健诊断方法[J]. 电工技术学报, 2014, 29(增刊1):50-58. |
[20] | 朱萌, 梅飞, 郑建勇, 等. 基于深度信念网络的高压断路器故障识别算法[J]. 电测与仪表, 2019, 56(2):10-15,46. |
[21] | PAN Y, MEI F, MIAO H Y, et al. An approach for hvcb mechanical fault diagnosis based on a deep belief network and a transfer learning strategy[J]. Journal of Electrical Engineering & Technology, 2019, 14(1):407-419. |
[22] | LECUN Y, BOSER B, DENKER J S, et al. Handwritten digit recognition with a back-propagation network[M]//Advances in Neural Information Processing Systems. San Francisco, CA: Morgan Kaufmann Publishers Inc., 1990:396-404. |
[23] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]// Advances in neural information processing systems. 2012:1097-1105. |
[24] |
SMIRNOV E A, TIMOSHENKO D M, ANDRIANOV S N. Comparison of regularization methods for imagenet classification with deep convolutional neural networks[J]. Aasri Procedia, 2014, 6:89-94.
doi: 10.1016/j.aasri.2014.05.013 |
[25] | 吐松江·卡日, 逯浩坦, 高文胜, 等. 基于系统动力学的高压断路器全寿命成本评估[J]. 高压电器, 2023, 59(1):69-175,184. |
[26] | YANG H M, ZHANG X Y, YIN F, et al. Robust classification with convolutional prototype learning[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2018:3474-3482. |
[27] | ARANGANAYAGI S, THANGAVEL K. Clustering categorical data using silhouette coefficient as a relocating measure[C]// International Conference On Computational Intelligence and Multimedia Applications (ICCIMA 2007).IEEE, 2007, 2:13-17. |
[28] | 叶昱媛, 沙浩源, 梁君涵, 等. 基于小波包能量的断路器操作机构缺陷诊断技术研究[J]. 电力工程技术, 2018, 37(4):71-77. |
[29] | LU Y, Li Y. A novel fault diagnosis method for circuit breakers based on optimized affinity propagation clustering[J]. International Journal of Electrical Power & Energy Systems, 2020, 118:1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||