LOW VOLTAGE APPARATUS ›› 2024, Vol. 0 ›› Issue (11): 10-19.doi: 10.16628/j.cnki.2095-8188.2024.11.002
• Overview • Previous Articles Next Articles
LIU Jianchao1,2,3, GUO Weiwen1,2,3,4, LU Deng1,4, YANG Liming1,2,3, JIANG Caisheng5
Received:
2024-07-21
Online:
2024-11-30
Published:
2024-12-11
CLC Number:
LIU Jianchao, GUO Weiwen, LU Deng, YANG Liming, JIANG Caisheng. Research Progress on Active Protection Against Thermal Runaway of High Power Fast Charging Lithium-ion Batteries[J]. LOW VOLTAGE APPARATUS, 2024, 0(11): 10-19.
[1] | 吴宁宁, 殷志刚, 曹敏花. 快速充电锂离子电池研究进展[J]. 新能源进展, 2022, 10(4):325-339. |
[2] |
孙方静, 韦连梅, 张家玮, 等. 锂离子电池快充石墨负极材料的研究进展及评价方法[J]. 储能科学与技术, 2017, 6(6):1223-1230.
doi: 10.12028/j.issn.2095-4239.2017.0098 |
[3] | 特斯拉官网. 超级快充[EB/OL].[2024-09-14]. https://www.tesla.cn/support/supercharger. |
[4] | 小鹏官网. High-voltage fast charge[EB/OL]. [2024-09-14]. https://www.xiaopeng.com/charging.html. |
[5] | 保时捷官网. 电动汽车充电站[EB/OL]. [2024-09-14]. https://newsroom.porsche.com/zh/technology/cn-porsche-e-mobility-fast-charging-modular-building-blocks-system-electricity-grid-visitor-frequency-space-constraints-power-electronics-cooling-unit-pit-stop-missione-taycan-engineering-2018-1-15848.html. |
[6] | 欧阳明高. 如何做好动力电池热失控的安全防控?[J]. 汽车纵横, 2019(7):20-23. |
[7] | SPOTNITZ R, FRANKLINB J. Abuse behavior of high-power,lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1):81-100. |
[8] | LIU J, WANG Z, BAI J. Influences of multi factors on thermal runaway induced by overcharging of lithium-ion battery[J]. Journal of Energy Chemistry, 2022,70:531-541. |
[9] | LI Y, FENG X, REN D, et al. Thermal runaway triggered by plated lithium on the anode after fast charging[J]. ACS Applied Materials & Interfaces, 2019, 11(50):46839-46850. |
[10] | 褚政宇. 基于降维电化学模型的锂离子动力电池无析锂快充控制[D]. 北京: 清华大学, 2019. |
[11] | 安坤, 田政, 赵锦, 等. 浅析电化学储能电站建设中存在的安全隐患及解决措施[J]. 电器与能效管理技术, 2020(10):107-113. |
[12] | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016. |
[13] | 张志刚, 张涛, 汤爱华, 等. 车用锂电池健康状态下快充方法研究综述[J]. 西南大学学报(自然科学版), 2022, 44(2):194-206. |
[14] |
杲齐新, 赵景腾, 李国兴. 锂离子电池快速充电研究进展[J]. 储能科学与技术, 2023, 12(7):2166-2184.
doi: 10.19799/j.cnki.2095-4239.2023.0287 |
[15] | LI Y, FENG X, REN D, et al. Varying thermal runaway mechanism caused by fast charging for high energy pouch batteries[J]. ECS Meeting Abstracts, 2019(6):585. |
[16] | KEYSER M, PESARAN A, LI Q, et al. Enabling fast charging-battery thermal considerations[J]. Journal of Power Sources, 2017,367:228-236. |
[17] | TOMASZEWSKA A, CHU Z Y, FENG X N, et al. Lithium-ion battery fast charging:A review[J]. eTransportation, 2019,1:100011. |
[18] | KLEIN R, CHATURVEDI N A, CHRISTENSEN J, et al. Electrochemical model based observer design for a lithium-ion battery[J]. IEEE Transactions on Control Systems Technology, 2013, 21(2):289-301. |
[19] | 刘倩倩, 赵言本, 吕超. 磷酸铁锂电池大倍率充放电模型仿真研究[J]. 电器与能效管理技术, 2020(5):57-61. |
[20] | KLEIN R, CHATURVEDI N A, CHRISTENSEN J, et al. Optimal charging strategies in lithium-ion battery[C]// Proceedings of the Proceedings of the 2011 American Control Conference,2011:382-387. |
[21] | CHU Z Y, FENG X N, LU L G, et al. Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model[J]. Applied Energy, 2017,204:1240-1250. |
[22] | 周旋, 周萍, 郑岳久, 等. 锂离子电池宽温度区间无析锂快充策略[J]. 汽车安全与节能学报, 2020, 11(3):397-405. |
[23] | 劳力. 高比能锂离子动力电池系统充电策略及热失控安全研究[D]. 合肥: 中国科学技术大学, 2020. |
[24] | YANG X G, LIU T, GAO Y, et al. Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries[J]. Joule, 2019, 3(12):3002-3019. |
[25] | YANG X G, LIU T, WANG C Y. Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles[J]. Nature Energy, 2021, 6(2):176-185. |
[26] | WANG C Y, ZHANG G, GE S, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587):515-518. |
[27] | YANG X G, ZHANG G, GE S, et al. Fast charging of lithium-ion batteries at all temperatures[J]. Proc Natl Acad Sci USA, 2018, 115(28):7266-7271. |
[28] | RODRIGUES M T F, SHKROB I A, COLCLASURE A M, et al. Fast charging of Li-ion cells:Part IV.temperature effects and “safe lines” to avoid lithium plating[J]. Journal of the Electrochemical Society, 2020, 167(13):1-12. |
[29] | AN F, ZHANG R, WEI Z, et al. Multi-stage constant-current charging protocol for a high-energy-density pouch cell based on a 622NCM/graphite system[J]. RSC Advances, 2019, 9(37):21498-21506. |
[30] | PURUSHOTHAMAN B K, LANDAU U. Rapid charging of lithium-ion batteries using pulsed currents:A theoretical analysis[J]. Journal of the Electrochemical Society, 2006, 153(3):A533-A542. |
[31] | 高春兰, 谢青松, 李延强, 等. 基于锂离子动力电池的分阶段脉冲充电法研究[J]. 电器与能效管理技术, 2016(18):50-55. |
[32] | ARYANFAR A, BROOKS D, MERINOV B V, et al. Dynamics of lithium dendrite growth and inhibition:Pulse charging experiments and Monte Carlo calculations[J]. The Journal of Physical Chemistry Letters, 2014, 5(10):1721-1726. |
[33] | SONG M, CHOE S Y. Fast and safe charging method suppressing side reaction and lithium deposition reaction in lithium ion battery[J]. Journal of Power Sources, 2019,436:226835. |
[34] | 刘倩倩. 锂离子电池负极析锂机制及抑制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
[35] | PARIKH D, CHRISTENSEN T, LI J. Correlating the influence of porosity,tortuosity,and mass loading on the energy density of LiNi0.6Mn0.2Co0.2O2 cathodes under extreme fast charging (XFC) conditions[J]. Journal of Power Sources, 2020,474:228601. |
[36] |
QI S, WANG H, HE J, et al. Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries[J]. Science Bulletin, 2021, 66(7):685-693.
doi: 10.1016/j.scib.2020.09.018 pmid: 36654444 |
[37] | LI F, HE J, LIU J, et al. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(12):6600-6608. |
[38] | YUE X, ZHANG J, DONG Y, et al. Reversible Li plating on graphite anodes through electrolyte engineering for fast-charging batteries[J]. Angewandte Chemie International Edition, 2023, 62(19):e202302285. |
[39] | 陈旭海, 罗景生, 陈永福, 等. 基于Ansys的磷酸铁锂储能电池系统热分析及优化[J]. 电器与能效管理技术, 2020(10):41-46. |
[40] | KIM G H, SMITH K, LEE K J, et al. Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales[J]. Journal of the Electrochemical Society, 2011, 158(8):A955-A969. |
[41] | CHEN Y H, WANG C W, LIU G, et al. Selection of conductive additives in Li-ion battery cathodes:A numerical study[J]. Journal of The Electrochemical Society, 2007, 154(10):A978-A986. |
[42] | XU X M, HE R. Review on the heat dissipation performance of battery pack with different structures and operation conditions[J]. Renewable and Sustainable Energy Reviews, 2014,29:301-315. |
[43] |
王莉, 谢乐琼, 张干, 等. 锂离子电池一致性筛选研究进展[J]. 储能科学与技术, 2018, 7(2):194-202.
doi: 10.12028/j.issn.2095-4239.2017.0169 |
[44] |
吴晓刚, 崔智昊, 孙一钊, 等. 电动汽车大功率充电过程动力电池充电策略与热管理技术综述[J]. 储能科学与技术, 2021, 10(6):2218-2234.
doi: 10.19799/j.cnki.2095-4239.2021.0267 |
[45] | SABBAH R, KIZILEL R, SELMAN J R, et al. Active (air-cooled) vs.passive (phase change material) thermal management of high power lithium-ion packs:Limitation of temperature rise and uniformity of temperature distribution[J]. Journal of Power Sources, 2008, 182(2):630-638. |
[46] | AFZAL A, MOHAMMED SAMEE A D, ABDUL RAZAK R K, et al. Thermal management of modern electric vehicle battery systems (MEVBS)[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(4):1271-1285. |
[47] | RAO Z, WANG S. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9):4554-4571. |
[48] | 田钧, 高帅. 基于浸没式技术的纯电动汽车电池包热管理方案解析[J]. 汽车电器, 2023(5):6-8. |
[49] | LING Z, WANG F, FANG X, et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Applied Energy, 2015,148:403-409. |
[50] | ZHAO R, GU J, LIU J. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries[J]. Journal of Power Sources, 2015,273:1089-1097. |
[51] | MAO B, LIU C, YANG K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021,139:110717. |
[52] | 丁奕, 杨艳, 陈锴, 等. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6):1821-1833. |
[53] |
刘昱君, 段强领, 黎可, 等. 多种灭火剂扑救大容量锂离子电池火灾的实验研究[J]. 储能科学与技术, 2018, 7(6):1105-1112.
doi: 10.12028/j.issn.2095-4239.2018.0188 |
[1] | WU Yuhao, CHEN Siwen, GUO Yilong, XING Shiyou, WANG Shuhang, WANG Ruoyu, SUN Jinlei. Research on Temperature Inconsistency of New and Aged Mixed Battery Packs [J]. LOW VOLTAGE APPARATUS, 2024, 0(11): 38-44. |
[2] | LI Xiaohua. Remaining Useful Life Prediction of Lithium Batteries Based on IPSO-LIESN network [J]. LOW VOLTAGE APPARATUS, 2023, 0(5): 51-58. |
[3] | LI Jianlin, WANG Zhe, XU Dezhi, MA Fuyuan, MENG Gaojun. Overview of Key Technologies for Lithium-ion Battery Life Prediction Based on Data-Driven Methods [J]. LOW VOLTAGE APPARATUS, 2021, 0(9): 10-18. |
[4] | LI Xiaoyu, CHEN Xuankai, LI Jiaxu, LIN Zihan. Driving Range Prediction of Electric Vehicles Based on Machine Learning [J]. LOW VOLTAGE APPARATUS, 2021, 0(10): 78-82. |
[5] | LI Wenqi, GAO Dongxue, LI Zhaohui, RAO Yufei, GU Bo. Forecast and Uncertainty Analysis of Lithium-ion Batteries SOC Based on LSTM-NPKDE [J]. DIANQI YU NENGXIAO GUANLI JISHU, 2020, 0(5): 44-50. |
[6] | LIU Qianqian, ZHAO Yanben, LÜ Chao. Research on Model Simulation for High Current-Rate Charge/Discharge of LiFePO4 Lithium-ion Batteries [J]. DIANQI YU NENGXIAO GUANLI JISHU, 2020, 0(5): 57-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||