[1] |
李伟, 李硕. 理解数字声音——基于一般音频/环境声的计算机听觉综述[J]. 复旦学报(自然科学版), 2019, 58(3):5-49.
|
[2] |
CHACHADA S, KUO C C J. Environmental sound recognition: A survey[C]// Signal & Information Processing Association Summit & Conference.IEEE, 2014, 3:1-9.
|
[3] |
侯春光, 高玉东, 高有华, 等. 开关柜放电声音特征提取的仿真分析[J]. 电器与能效管理技术, 2019(21):27-32,36.
|
[4] |
侯春光, 孙小涵, 赵长权, 等. 基于频带能量特征提取的10kV固体绝缘柜表面放电音频信号识别[J]. 电器与能效管理技术, 2020(3):43-47.
|
[5] |
周斌, 郭荣敬. 如何消除交流继电器的交流声[J]. 机电元件, 1994, 14(1):7-12.
|
[6] |
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences, 1998, 454:903-995.
|
[7] |
LEI Y G, LIN J, HE Z J, et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery[J]. Mechanical Systems & Signal Processing, 2013, 35(1-2):108-126.
|
[8] |
DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
|
[9] |
RAM R, MOHANTY M N. Comparative analysis of EMD and VMD algorithm in speech enhancement[J]. International Journal of Natural Computing Research, 2017, 6(1):17-35.
doi: 10.4018/IJNCR.2017010102
|
[10] |
刘长良, 武英杰, 甄成刚. 基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J]. 中国电机工程学报, 2015, 35(13):166-173.
|
[11] |
PU S, YANG W. Precise feature extraction from wind turbine condition monitoring signals by using optimised variational mode decomposition[J]. IET Renewable Power Generation, 2017, 11(3):245-252.
doi: 10.1049/iet-rpg.2016.0716
|
[12] |
MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114:163-191.
doi: 10.1016/j.advengsoft.2017.07.002
|
[13] |
郑圆, 胡建中, 贾民平, 等. 一种基于参数优化变分模态分解的滚动轴承故障特征提取方法[J]. 振动与冲击, 2020, 39(21):202-209.
|