LOW VOLTAGE APPARATUS ›› 2021, Vol. 0 ›› Issue (11): 1-7.doi: 10.16628/j.cnki.2095-8188.2021.11.001
• Overview • Next Articles
WENG Zhimin1, ZHU Zhenshan1,2, WEN Buying1,3, ZHENG Hailin1, CHEN Zhesheng1, LIN Wenjian1
Received:2021-07-10
Online:2021-11-30
Published:2022-01-25
CLC Number:
WENG Zhimin, ZHU Zhenshan, WEN Buying, ZHENG Hailin, CHEN Zhesheng, LIN Wenjian. Review of Power System with High Proportion of Renewable Energy[J]. LOW VOLTAGE APPARATUS, 2021, 0(11): 1-7.
| [1] | 邱伟强, 王茂春, 林振智, 等. “双碳”目标下面向新能源消纳场景的共享储能综合评价[J]. 电力自动化设备, 2021, 41(10):244-255. |
| [2] | 王静, 徐箭, 廖思阳, 等. 计及新能源出力不确定性的电气综合能源系统协同优化[J]. 电力系统自动化, 2019, 43(15):2-9. |
| [3] | 侯四维, 许建军. 考虑可再生能源并网的配电网规划技术[J]. 电器与能效管理技术, 2018(5):69-72. |
| [4] | GAN J T, LI J L, QI W N, et al. A review on capacity optimization of hybrid renewable power system with energy storage [C]//Proceedings of 2019 4th International Conference on Advances in Energy and Environment Research, 2019:597-601. |
| [5] | JAVANMARD B, TABRIZIAN M, ANSARIAN M, et al. Energy management of multi-microgrids based on game theory approach in the presence of demand response programs,energy storage systems and renewable energy resources[J]. Journal of Energy Storage, 2021, 42:1-16. |
| [6] | 刘俊峰, 陈剑龙, 王晓生, 等. 基于深度强化学习的微能源网能量管理与优化策略研究[J]. 电网技术, 2020, 44(10):3794-3803. |
| [7] | 田芳, 黄彦浩, 史东宇, 等. 电力系统仿真分析技术的发展趋势[J]. 中国电机工程学报, 2014, 34(13):2151-2163. |
| [8] | LIU L, JIE Y, PENG L, et al. The low carbon power dispatch strategy for generation traders considering the risks of carbon trading:2017 4th International Conference on Systems and Informatics (ICSAI) [C]. 2017:424-429. |
| [9] | 魏震波, 隋东旭, 王瀚琳, 等. 含双边储备市场及绿证交易的现货市场分析[J]. 电力系统保护与控制, 2020, 48(8):52-60. |
| [10] | 叶瑞丽, 郭志忠, 刘瑞叶, 等. 基于风电功率预测误差分析的风电场储能容量优化方法[J]. 电力系统自动化, 2014, 38(16):28-34. |
| [11] | 甘伟, 郭剑波, 艾小猛, 等. 应用于风电场出力平滑的多尺度多指标储能配置[J]. 电力系统自动化, 2019, 43(9):92-98. |
| [12] | 方保民, 李延和, 曲立楠, 等. 考虑风电及可中断负荷一次调频能力的日前调度模型[J]. 电力电容器与无功补偿, 2021, 42(4):242-250. |
| [13] | 贠韫韵, 董海鹰, 陈钊, 等. 计及储能参与的新能源发电系统多目标优化调度(英文)[J]. Journal of Measurement Science and Instrumentation, 2020, 11(4):365-372. |
| [14] |
GOLSHANNAVAZ S, AFSHARNIA S, AMINIFAR F. Smart distribution grid:optimal day-ahead scheduling with reconfigurable topology[J]. IEEE Transactions on Smart Grid, 2014, 5(5):2402-2411.
doi: 10.1109/TSG.2014.2335815 |
| [15] | 甘伟, 艾小猛, 方家琨, 等. 风-火-水-储-气联合优化调度策略[J]. 电工技术学报, 2017, 32(增刊1):11-20. |
| [16] |
TANG X Y, HU Y, CHEN Z P, et al. Flexibility evaluation method of power systems with high proportion renewable energy based on typical operation scenarios[J]. Electronics, 2020, 9(4):1-25.
doi: 10.3390/electronics9010001 |
| [17] | 黄鹏翔, 周云海, 徐飞, 等. 基于灵活性裕度的含风电电力系统源荷储协调滚动调度[J]. 中国电力, 2020, 53(11):78-88. |
| [18] | 张晴, 李欣然, 杨明, 等. 净效益最大的平抑风电功率波动的混合储能容量配置方法[J]. 电工技术学报, 2016, 31(14):40-48. |
| [19] | 杨修宇, 段士伟, 安军, 等. 固定储能配比对风电基地外送输电容量的影响分析[J]. 太阳能学报, 2020, 41(8):60-66. |
| [20] |
TELARETTI E, DUSONCHET L. Stationary battery technologies in the U.S.:Development trends and prospects[J]. Renewable and Sustainable Energy Reviews, 2016, 75:380-392.
doi: 10.1016/j.rser.2016.11.003 |
| [21] | 李建林, 孟高军, 葛乐, 等. 全球能源互联网中的储能技术及应用[J]. 电器与能效管理技术, 2020(1):1-8. |
| [22] | 张野, 郭力, 贾宏杰, 等. 基于电池荷电状态和可变滤波时间常数的储能控制方法[J]. 电力系统自动化, 2012, 36(6):34-38,62. |
| [23] | 雷珽, 欧阳曾恺, 李征, 等. 平抑风能波动的储能电池SOC与滤波协调控制策略[J]. 电力自动化设备, 2015, 35(07):126-131. |
| [24] |
FANG C, TANG Y, YE R, et al. Adaptive control strategy of energy storage system participating in primary frequency regulation[J]. Processes, 2020, 8(6):687.
doi: 10.3390/pr8060687 |
| [25] | 李军徽, 岳鹏程, 李翠萍, 等. 提高风能利用水平的风电场群储能系统控制策略[J]. 电力自动化设备, 2021, 41(10):162-169. |
| [26] | 曾宇, 刘友波, 高红均, 等. 基于模型预测控制的高压配电网负荷转供与储能电站协同运行[J]. 电网技术, 2021, 45(5):1902-1911. |
| [27] | 谢毓广, 江晓东. 储能系统对含风电的机组组合问题影响分析[J]. 电力系统自动化, 2011, 35(5):19-24. |
| [28] | 王德顺, 薛金花, 叶季蕾, 等. 基于粒子群算法的储能电站经济优化调度策略[J]. 可再生能源, 2019, 37(5):714-719. |
| [29] | 李宏仲, 王磊, 林冬, 等. 多主体参与可再生能源消纳的Nash博弈模型及其迁移强化学习求解[J]. 中国电机工程学报, 2019, 39(14):4135-4150. |
| [30] | 刘起兴, 胡亚平, 许丹莉, 等. 计及综合能源服务商调节域的综合需求响应市场机制[J]. 电网技术, 2021, 45(5):1932-1943. |
| [31] | 田世明, 王蓓蓓, 等. 智能电网条件下的需求响应关键技术[J]. 中国电机工程学报, 2014, 34(22):3576-3589. |
| [32] | KIRKERUD J G, NAGEL N O, BOLKESJ T F . The role of demand response in the future renewable northern european energy system[J]. Energy, 2021, 235(C):1-11. |
| [33] | 徐箭, 胡佳, 廖思阳, 等. 考虑网络动态特性与综合需求响应的综合能源系统协同优化[J]. 电力系统自动化, 2021, 45(12):40-48. |
| [34] | 崔杨, 张家瑞, 王铮, 等. 计及价格型需求响应的风-光-光热联合发电系统日前调度策略[J]. 中国电机工程学报, 2020, 40(10):3103-3114. |
| [35] | 曾丹, 姚建国, 杨胜春, 等. 应对风电消纳中基于安全约束的价格型需求响应优化调度建模[J]. 中国电机工程学报, 2014, 34(31):5571-5578. |
| [36] | 仉梦林, 胡志坚, 李燕, 等. 基于可行性检测的考虑风电和需求响应的机组组合鲁棒优化方法[J]. 中国电机工程学报, 2018, 38(11):3184-3194. |
| [37] |
KIM Y, NORFORD L K . Optimal use of thermal energy storage resources in commercial buildings through price-based demand response considering distribution network operation[J]. Applied Energy, 2017, 193(C):308-324.
doi: 10.1016/j.apenergy.2017.02.046 |
| [38] |
崔杨, 李崇钢, 赵钰婷, 等. 考虑风-光-光热联合直流外送的源-网-荷多时段优化调度方法[J/OL]. 中国电机工程学报:1-15[2021-10-22]. https://doi.org/10.13334/j.0258-8013.pcsee.201907.
doi: https://doi.org/10.13334/j.0258-8013.pcsee.201907 |
| [39] | DINI ANOOSH, HASSANKASHI ALIREZA, PIROUZI SASAN, et al. A flexible-reliable operation optimization model of the networked energy hubs with distributed generations,energy storage systems and demand response[J]. Energy, 2022, 239(PA):1-16. |
| [40] | AGHAJANI G R, SHAYANFAR H A, SHAYEGHI H. Demand side management in a smart micro-grid in the presence of renewable generation and demand response[J]. Energy,Elsevier, 2017, 126(C):622-637. |
| [41] | 鞠立伟, 秦超, 吴鸿亮, 等. 计及多类型需求响应的风电消纳随机优化调度模型[J]. 电网技术, 2015, 39(7):1839-1846. |
| [42] | 赵泽昆, 王瑶, 陈超, 等. 基于量子粒子群优化BP神经网络的风机出力预测[J]. 电器与能效管理技术, 2019(24):45-50. |
| [43] | 苗长新, 李昊, 王霞, 等. 基于数据驱动和深度学习的超短期风电功率预测[J]. 电力系统自动化, 2021, 45(14):22-29. |
| [44] | WEN L, ZHOU K, YANG S, et al. Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting[J]. Energy,Elsevier, 2019, 171(C):1053-1065. |
| [45] | 钟宏宇, 王超, 张旭光, 等. 组合预测技术在风电中的研究分析[J]. 电器与能效管理技术, 2018(16):60-66. |
| [46] | 陈金富, 朱乔木, 石东源, 等. 利用时空相关性的多位置多步风速预测模型[J]. 中国电机工程学报, 2019, 39(7):2093-2106. |
| [47] | 孟安波, 许炫淙, 陈嘉铭, 等. 基于强化学习和组合式深度学习模型的超短期光伏功率预测[J/OL]. 电网技术:1-9[2021-10-21]. https://doi.org/10.13335/j.1000-3673.pst.2021.0319. |
| [48] | KUZNETSOVA E, LI Y F, RUIZ C, et al. Reinforcement learning for microgrid energy management[J]. Energy,Elsevier, 2013, 59(C):133-146. |
| [49] | 于一潇, 杨佳峻, 杨明, 等. 基于深度强化学习的风电场储能系统预测决策一体化调度[J]. 电力系统自动化, 2021, 45(1):132-140. |
| [50] | 李涛, 胡维昊, 李坚, 等. 基于深度强化学习算法的光伏-抽蓄互补系统智能调度[J]. 电工技术学报, 2020, 35(13):2757-2768. |
| [51] | 彭刘阳, 孙元章, 徐箭, 等. 基于深度强化学习的自适应不确定性经济调度[J]. 电力系统自动化, 2020, 44(9):33-42. |
| [52] | 王元章, 吴春华, 周笛青, 等. 基于BP神经网络的光伏阵列故障诊断研究[J]. 电力系统保护与控制, 2013, 41(16):108-114. |
| [53] | 张文军, 林永君, 李静, 等. 基于长短期记忆神经网络的光伏阵列故障诊断[J]. 热力发电, 2021, 50(6):60-68. |
| [54] | 叶进, 卢泉, 王钰淞, 等. 基于级联随机森林的光伏故障诊断模型研究[J]. 太阳能学报, 2021, 42(3):358-362. |
| [55] | 孙莉, 李静, 李继云, 等. 基于稀疏贝叶斯极限学习机的光伏电站设备故障诊断研究[J]. 太阳能学报, 2020, 41(8):221-226. |
| [56] | 席磊, 陈建峰, 黄悦华, 等. 基于具有动作自寻优能力的深度强化学习的智能发电控制[J]. 中国科学:信息科学, 2018, 48(10):1430-1449. |
| [57] | 王渝红, 周旭, 陈磊, 等. 基于DDQN的风电替代传统电源的输电网结构优化研究[J/OL]. 电网技术:1-11[2021-10-21]. https://doi.org/10.13335/j.1000-3673.pst.2021.0940. |
| [58] | 张承圣, 邵振国, 陈飞雄, 等. 基于条件深度卷积生成对抗网络的新能源发电场景数据迁移方法[J/OL]. 电网技术:1-11[2021-10-21]. https://doi.org/10.13335/j.1000-3673.pst.2021.1008. |
| [1] | WANG Haoran, LIU Huaizhao, SHEN Zhiguang, ZHANG Ningyuan, CHEN Shangshang. Application and Practice of Energy Storage Control Technology for Assiting Thermal Unit Frequency Regulation [J]. LOW VOLTAGE APPARATUS, 2025, 0(4): 71-77. |
| [2] | LI Jinwei, LI Tang, MAO Xingkui, ZHANG Zhe. Design of Type I Three-Level Energy Storage Converter [J]. LOW VOLTAGE APPARATUS, 2024, 0(4): 38-44. |
| [3] | LIU Yangguang. Low Carbon Optimal Dispatch Strategy for Electricity Based on Dynamic Carbon Emission Factors [J]. LOW VOLTAGE APPARATUS, 2024, 0(12): 26-32. |
| [4] | WANG Yue, SHENG Yongbing. Research on Remote Tripping Disconnector [J]. LOW VOLTAGE APPARATUS, 2024, 0(12): 51-56. |
| [5] | SU Tao. Comparative Analysis of China’s Energy Storage Policies During the 14th Five Year Plan Period [J]. LOW VOLTAGE APPARATUS, 2024, 0(11): 1-9. |
| [6] | QU Zhanzhan, YANG Ruohuan, NIU Meng, DU Gaoxian, WANG Huanling, LIU Yating. Research on Stable Enhancement of Black Start Frequency for Grid Forming Energy Storage System Based on Unbiased Integral Feedback Frequency Control [J]. LOW VOLTAGE APPARATUS, 2024, 0(11): 20-28. |
| [7] | DOU Yan, WANG Chuanyi, CHEN Zihui, WANG Chen, LI Xin. Modeling and Research on Grid-Forming Energy Storage Based on Vanadium Redox Flow Battery [J]. LOW VOLTAGE APPARATUS, 2024, 0(11): 29-37. |
| [8] | WEI Xiaogang, LI Zhaoze, ZHANG Jihong, WU Zhenkui, ZHANG Zilei. Hierarchical Optimal Scheduling of Virtual Power Plants Considering Multiple Flexible Loads [J]. LOW VOLTAGE APPARATUS, 2024, 0(11): 73-81. |
| [9] | ZHU Liwei, FU Xiangyun, NIU Meng, QU Zhanzhan, GUANG Hongwei, SONG Jiakang, YUE Fuchang. Impact Assessment and Adaptive Protection Strategy of Energy Storage Access into Distribution Network [J]. LOW VOLTAGE APPARATUS, 2023, 0(9): 1-10. |
| [10] | ZHU Chen, ZHENG Junfeng, FANG Xing, FU Xiang, CHEN Baiyuan, GAO Kefu, HU Xiangwei, HUANG Jiyuan. Large-Scale Energy Storage Assisted Transient Voltage Stability Control Model and Application of Power Grid [J]. LOW VOLTAGE APPARATUS, 2023, 0(9): 11-17. |
| [11] | WANG Limeng, QU Yang, LIU Yutu, YANG Ranran. Optimal Configuration of Customer Energy Storage Based on Power Big Data [J]. LOW VOLTAGE APPARATUS, 2023, 0(9): 32-38. |
| [12] | LÜ Haichao, MENG Fanti, LIU Miaomiao, JIA Tian, NIU Gaoyuan. Non Power Point Energy Storage Power Supply [J]. LOW VOLTAGE APPARATUS, 2023, 0(9): 50-54. |
| [13] | XIA Lili, BIAN Zhaojuan, DONG Anqi. Design of Mobile Charging Equipment for Electric Agricultural Machinery [J]. LOW VOLTAGE APPARATUS, 2023, 0(5): 45-50. |
| [14] | BAI Zhongbin. Optimization of Energy Storage Capacity for Wind Farm Under Multi-Scale Flexible Resource Game [J]. LOW VOLTAGE APPARATUS, 2023, 0(5): 79-88. |
| [15] | HUANG Kecheng, WANG Xianbing, PENG Jing, HOU Ziyang, PENG Jiyu. Design of PI Constant Current Charging Controller for Mining Permanent Magnet Contactor [J]. LOW VOLTAGE APPARATUS, 2023, 0(12): 53-59. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||