LOW VOLTAGE APPARATUS ›› 2021, Vol. 0 ›› Issue (11): 1-7.doi: 10.16628/j.cnki.2095-8188.2021.11.001
• Overview • Next Articles
WENG Zhimin1, ZHU Zhenshan1,2, WEN Buying1,3, ZHENG Hailin1, CHEN Zhesheng1, LIN Wenjian1
Received:
2021-07-10
Online:
2021-11-30
Published:
2022-01-25
CLC Number:
WENG Zhimin, ZHU Zhenshan, WEN Buying, ZHENG Hailin, CHEN Zhesheng, LIN Wenjian. Review of Power System with High Proportion of Renewable Energy[J]. LOW VOLTAGE APPARATUS, 2021, 0(11): 1-7.
[1] | 邱伟强, 王茂春, 林振智, 等. “双碳”目标下面向新能源消纳场景的共享储能综合评价[J]. 电力自动化设备, 2021, 41(10):244-255. |
[2] | 王静, 徐箭, 廖思阳, 等. 计及新能源出力不确定性的电气综合能源系统协同优化[J]. 电力系统自动化, 2019, 43(15):2-9. |
[3] | 侯四维, 许建军. 考虑可再生能源并网的配电网规划技术[J]. 电器与能效管理技术, 2018(5):69-72. |
[4] | GAN J T, LI J L, QI W N, et al. A review on capacity optimization of hybrid renewable power system with energy storage [C]//Proceedings of 2019 4th International Conference on Advances in Energy and Environment Research, 2019:597-601. |
[5] | JAVANMARD B, TABRIZIAN M, ANSARIAN M, et al. Energy management of multi-microgrids based on game theory approach in the presence of demand response programs,energy storage systems and renewable energy resources[J]. Journal of Energy Storage, 2021, 42:1-16. |
[6] | 刘俊峰, 陈剑龙, 王晓生, 等. 基于深度强化学习的微能源网能量管理与优化策略研究[J]. 电网技术, 2020, 44(10):3794-3803. |
[7] | 田芳, 黄彦浩, 史东宇, 等. 电力系统仿真分析技术的发展趋势[J]. 中国电机工程学报, 2014, 34(13):2151-2163. |
[8] | LIU L, JIE Y, PENG L, et al. The low carbon power dispatch strategy for generation traders considering the risks of carbon trading:2017 4th International Conference on Systems and Informatics (ICSAI) [C]. 2017:424-429. |
[9] | 魏震波, 隋东旭, 王瀚琳, 等. 含双边储备市场及绿证交易的现货市场分析[J]. 电力系统保护与控制, 2020, 48(8):52-60. |
[10] | 叶瑞丽, 郭志忠, 刘瑞叶, 等. 基于风电功率预测误差分析的风电场储能容量优化方法[J]. 电力系统自动化, 2014, 38(16):28-34. |
[11] | 甘伟, 郭剑波, 艾小猛, 等. 应用于风电场出力平滑的多尺度多指标储能配置[J]. 电力系统自动化, 2019, 43(9):92-98. |
[12] | 方保民, 李延和, 曲立楠, 等. 考虑风电及可中断负荷一次调频能力的日前调度模型[J]. 电力电容器与无功补偿, 2021, 42(4):242-250. |
[13] | 贠韫韵, 董海鹰, 陈钊, 等. 计及储能参与的新能源发电系统多目标优化调度(英文)[J]. Journal of Measurement Science and Instrumentation, 2020, 11(4):365-372. |
[14] |
GOLSHANNAVAZ S, AFSHARNIA S, AMINIFAR F. Smart distribution grid:optimal day-ahead scheduling with reconfigurable topology[J]. IEEE Transactions on Smart Grid, 2014, 5(5):2402-2411.
doi: 10.1109/TSG.2014.2335815 |
[15] | 甘伟, 艾小猛, 方家琨, 等. 风-火-水-储-气联合优化调度策略[J]. 电工技术学报, 2017, 32(增刊1):11-20. |
[16] |
TANG X Y, HU Y, CHEN Z P, et al. Flexibility evaluation method of power systems with high proportion renewable energy based on typical operation scenarios[J]. Electronics, 2020, 9(4):1-25.
doi: 10.3390/electronics9010001 |
[17] | 黄鹏翔, 周云海, 徐飞, 等. 基于灵活性裕度的含风电电力系统源荷储协调滚动调度[J]. 中国电力, 2020, 53(11):78-88. |
[18] | 张晴, 李欣然, 杨明, 等. 净效益最大的平抑风电功率波动的混合储能容量配置方法[J]. 电工技术学报, 2016, 31(14):40-48. |
[19] | 杨修宇, 段士伟, 安军, 等. 固定储能配比对风电基地外送输电容量的影响分析[J]. 太阳能学报, 2020, 41(8):60-66. |
[20] |
TELARETTI E, DUSONCHET L. Stationary battery technologies in the U.S.:Development trends and prospects[J]. Renewable and Sustainable Energy Reviews, 2016, 75:380-392.
doi: 10.1016/j.rser.2016.11.003 |
[21] | 李建林, 孟高军, 葛乐, 等. 全球能源互联网中的储能技术及应用[J]. 电器与能效管理技术, 2020(1):1-8. |
[22] | 张野, 郭力, 贾宏杰, 等. 基于电池荷电状态和可变滤波时间常数的储能控制方法[J]. 电力系统自动化, 2012, 36(6):34-38,62. |
[23] | 雷珽, 欧阳曾恺, 李征, 等. 平抑风能波动的储能电池SOC与滤波协调控制策略[J]. 电力自动化设备, 2015, 35(07):126-131. |
[24] |
FANG C, TANG Y, YE R, et al. Adaptive control strategy of energy storage system participating in primary frequency regulation[J]. Processes, 2020, 8(6):687.
doi: 10.3390/pr8060687 |
[25] | 李军徽, 岳鹏程, 李翠萍, 等. 提高风能利用水平的风电场群储能系统控制策略[J]. 电力自动化设备, 2021, 41(10):162-169. |
[26] | 曾宇, 刘友波, 高红均, 等. 基于模型预测控制的高压配电网负荷转供与储能电站协同运行[J]. 电网技术, 2021, 45(5):1902-1911. |
[27] | 谢毓广, 江晓东. 储能系统对含风电的机组组合问题影响分析[J]. 电力系统自动化, 2011, 35(5):19-24. |
[28] | 王德顺, 薛金花, 叶季蕾, 等. 基于粒子群算法的储能电站经济优化调度策略[J]. 可再生能源, 2019, 37(5):714-719. |
[29] | 李宏仲, 王磊, 林冬, 等. 多主体参与可再生能源消纳的Nash博弈模型及其迁移强化学习求解[J]. 中国电机工程学报, 2019, 39(14):4135-4150. |
[30] | 刘起兴, 胡亚平, 许丹莉, 等. 计及综合能源服务商调节域的综合需求响应市场机制[J]. 电网技术, 2021, 45(5):1932-1943. |
[31] | 田世明, 王蓓蓓, 等. 智能电网条件下的需求响应关键技术[J]. 中国电机工程学报, 2014, 34(22):3576-3589. |
[32] | KIRKERUD J G, NAGEL N O, BOLKESJ T F . The role of demand response in the future renewable northern european energy system[J]. Energy, 2021, 235(C):1-11. |
[33] | 徐箭, 胡佳, 廖思阳, 等. 考虑网络动态特性与综合需求响应的综合能源系统协同优化[J]. 电力系统自动化, 2021, 45(12):40-48. |
[34] | 崔杨, 张家瑞, 王铮, 等. 计及价格型需求响应的风-光-光热联合发电系统日前调度策略[J]. 中国电机工程学报, 2020, 40(10):3103-3114. |
[35] | 曾丹, 姚建国, 杨胜春, 等. 应对风电消纳中基于安全约束的价格型需求响应优化调度建模[J]. 中国电机工程学报, 2014, 34(31):5571-5578. |
[36] | 仉梦林, 胡志坚, 李燕, 等. 基于可行性检测的考虑风电和需求响应的机组组合鲁棒优化方法[J]. 中国电机工程学报, 2018, 38(11):3184-3194. |
[37] |
KIM Y, NORFORD L K . Optimal use of thermal energy storage resources in commercial buildings through price-based demand response considering distribution network operation[J]. Applied Energy, 2017, 193(C):308-324.
doi: 10.1016/j.apenergy.2017.02.046 |
[38] |
崔杨, 李崇钢, 赵钰婷, 等. 考虑风-光-光热联合直流外送的源-网-荷多时段优化调度方法[J/OL]. 中国电机工程学报:1-15[2021-10-22]. https://doi.org/10.13334/j.0258-8013.pcsee.201907.
doi: https://doi.org/10.13334/j.0258-8013.pcsee.201907 |
[39] | DINI ANOOSH, HASSANKASHI ALIREZA, PIROUZI SASAN, et al. A flexible-reliable operation optimization model of the networked energy hubs with distributed generations,energy storage systems and demand response[J]. Energy, 2022, 239(PA):1-16. |
[40] | AGHAJANI G R, SHAYANFAR H A, SHAYEGHI H. Demand side management in a smart micro-grid in the presence of renewable generation and demand response[J]. Energy,Elsevier, 2017, 126(C):622-637. |
[41] | 鞠立伟, 秦超, 吴鸿亮, 等. 计及多类型需求响应的风电消纳随机优化调度模型[J]. 电网技术, 2015, 39(7):1839-1846. |
[42] | 赵泽昆, 王瑶, 陈超, 等. 基于量子粒子群优化BP神经网络的风机出力预测[J]. 电器与能效管理技术, 2019(24):45-50. |
[43] | 苗长新, 李昊, 王霞, 等. 基于数据驱动和深度学习的超短期风电功率预测[J]. 电力系统自动化, 2021, 45(14):22-29. |
[44] | WEN L, ZHOU K, YANG S, et al. Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting[J]. Energy,Elsevier, 2019, 171(C):1053-1065. |
[45] | 钟宏宇, 王超, 张旭光, 等. 组合预测技术在风电中的研究分析[J]. 电器与能效管理技术, 2018(16):60-66. |
[46] | 陈金富, 朱乔木, 石东源, 等. 利用时空相关性的多位置多步风速预测模型[J]. 中国电机工程学报, 2019, 39(7):2093-2106. |
[47] | 孟安波, 许炫淙, 陈嘉铭, 等. 基于强化学习和组合式深度学习模型的超短期光伏功率预测[J/OL]. 电网技术:1-9[2021-10-21]. https://doi.org/10.13335/j.1000-3673.pst.2021.0319. |
[48] | KUZNETSOVA E, LI Y F, RUIZ C, et al. Reinforcement learning for microgrid energy management[J]. Energy,Elsevier, 2013, 59(C):133-146. |
[49] | 于一潇, 杨佳峻, 杨明, 等. 基于深度强化学习的风电场储能系统预测决策一体化调度[J]. 电力系统自动化, 2021, 45(1):132-140. |
[50] | 李涛, 胡维昊, 李坚, 等. 基于深度强化学习算法的光伏-抽蓄互补系统智能调度[J]. 电工技术学报, 2020, 35(13):2757-2768. |
[51] | 彭刘阳, 孙元章, 徐箭, 等. 基于深度强化学习的自适应不确定性经济调度[J]. 电力系统自动化, 2020, 44(9):33-42. |
[52] | 王元章, 吴春华, 周笛青, 等. 基于BP神经网络的光伏阵列故障诊断研究[J]. 电力系统保护与控制, 2013, 41(16):108-114. |
[53] | 张文军, 林永君, 李静, 等. 基于长短期记忆神经网络的光伏阵列故障诊断[J]. 热力发电, 2021, 50(6):60-68. |
[54] | 叶进, 卢泉, 王钰淞, 等. 基于级联随机森林的光伏故障诊断模型研究[J]. 太阳能学报, 2021, 42(3):358-362. |
[55] | 孙莉, 李静, 李继云, 等. 基于稀疏贝叶斯极限学习机的光伏电站设备故障诊断研究[J]. 太阳能学报, 2020, 41(8):221-226. |
[56] | 席磊, 陈建峰, 黄悦华, 等. 基于具有动作自寻优能力的深度强化学习的智能发电控制[J]. 中国科学:信息科学, 2018, 48(10):1430-1449. |
[57] | 王渝红, 周旭, 陈磊, 等. 基于DDQN的风电替代传统电源的输电网结构优化研究[J/OL]. 电网技术:1-11[2021-10-21]. https://doi.org/10.13335/j.1000-3673.pst.2021.0940. |
[58] | 张承圣, 邵振国, 陈飞雄, 等. 基于条件深度卷积生成对抗网络的新能源发电场景数据迁移方法[J/OL]. 电网技术:1-11[2021-10-21]. https://doi.org/10.13335/j.1000-3673.pst.2021.1008. |
[1] | HUANG Zhao. Research on Multi-Source Coordinated Regulation Strategy from the Perspective of Regional Energy Internet [J]. LOW VOLTAGE APPARATUS, 2021, 0(9): 27-31. |
[2] | GUO Binqi, ZHANG Jiangfeng, SU Ye, WU Jiping, SUN Jiandong. Optimal Scheduling Strategy of Wind,Fire and Energy Storage Considering Battery Capacity Degradation [J]. LOW VOLTAGE APPARATUS, 2021, 0(9): 32-39. |
[3] | JIANG Xiaofeng, CHANG Luyu, CHEN Jue, ZHANG Meng. Comprehensive Evaluation of Electrochemical Energy Storage Power Station for New Energy Consumption [J]. LOW VOLTAGE APPARATUS, 2021, 0(9): 40-44. |
[4] | WANG Xiaoping, CHEN Yanlian, MAO Xingkui. Design of Energy Storage Power Converter [J]. LOW VOLTAGE APPARATUS, 2021, 0(8): 70-75. |
[5] | CONG Lin, WANG Nan, LI Zhiyuan, LI Na, ZHOU Xichao. Current Status and Prospect of Energy Storage Technology by Hydrogen Production Based on Water Electrolysis [J]. LOW VOLTAGE APPARATUS, 2021, 0(7): 1-7. |
[6] | WAN Lixin, LU Limin, LU Huaigu, HAN Yuqian, GE Le. Optimal Operation Method of Electric-Hydrogen Integrated Energy System Based on Master-Slave Game [J]. LOW VOLTAGE APPARATUS, 2021, 0(7): 14-22. |
[7] | LI Xuejun, ZHANG Yijin, ZHAO Ermin, ZHANG Wenqing, GAO Fei, YUAN Tiejiang. Low Voltage DC System Connected with Hydrogen Energy Storage and Its Business Model Construction [J]. LOW VOLTAGE APPARATUS, 2021, 0(7): 29-33. |
[8] | GU Suping, LU Mingyue, WU Haitao, LI Lin. Research on Node Site Selection and Capacity Configuration Technology of Clustered Energy Storage Power Station [J]. LOW VOLTAGE APPARATUS, 2021, 0(6): 30-35. |
[9] | CAO Xinhui, FU Lin, GAO Lingyu, KAI Saijiang, LI Zhongzheng, YUAN Tiejiang. Energy Storage Control Strategy to Eliminate Risk of New Energy Grid-Connected Operation [J]. LOW VOLTAGE APPARATUS, 2021, 0(5): 75-80. |
[10] | ZHANG Huaiyu, XU Chaoran, HUANG Zhilong, LU Jianyu, LI Yaping, HOU Yong. Coordinated Dispatch Method of Generation-Grid-Load-Storage Considering Uncertainty of PV Generation [J]. LOW VOLTAGE APPARATUS, 2021, 0(5): 86-92. |
[11] | LI Juan, ZHANG Liuli, TIAN Gangling, RUAN Peng. Analysis for Safe Region of SOC for Prefabricated Cabin Energy Storage System [J]. LOW VOLTAGE APPARATUS, 2021, 0(4): 77-80. |
[12] | LI Feng. Cascade Utilization Battery Energy Storage System Architecture and Control Strategy [J]. LOW VOLTAGE APPARATUS, 2021, 0(4): 81-84. |
[13] | WU Changlong, LUO Huawei, QIN Zhengbin, YU Haifeng, XU Zhiqiang. Analysis of Grid-Side Energy Storage Configuration Strategy Based on Bi-Level Programming [J]. LOW VOLTAGE APPARATUS, 2021, 0(4): 85-93. |
[14] | KONG Yukai, WEN Buying, ZHU Zhenshan, TANG Yuchen. Coordinated Optimization for Day-Ahead and Intra-Day Opertation of Island Micro-Grid Considering Energy Storage [J]. LOW VOLTAGE APPARATUS, 2021, 0(2): 65-74. |
[15] | LV Lixing, XU Feng, SUN Haoquan, DENG Huabin, JI Tongjun, CHEN Qian, ZHANG Zhengwei. Short Circuit Characteristics Analysis and Modeling on Inverter End of Energy Storage Power Station [J]. LOW VOLTAGE APPARATUS, 2021, 0(12): 20-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||