LOW VOLTAGE APPARATUS ›› 2024, Vol. 0 ›› Issue (4): 1-12.doi: 10.16628/j.cnki.2095-8188.2024.04.001
• Overview • Next Articles
XING Xiaowen, MU Shujun, FAN Yujian, SUN Xun, ZHOU Yipeng
Received:
2023-12-21
Online:
2024-04-30
Published:
2024-06-25
CLC Number:
XING Xiaowen, MU Shujun, FAN Yujian, SUN Xun, ZHOU Yipeng. Research Status and Trends of Key Technologies for Large Scale Wind/PV Hybrid Hydrogen Production and Storage System[J]. LOW VOLTAGE APPARATUS, 2024, 0(4): 1-12.
[1] | 许世森, 张瑞云, 程健, 等. 电解制氢与高温燃料电池在电力行业的应用与发展[J]. 中国电机工程学报, 2019, 39(9):2531-2536. |
[2] | 杨子龙, 赵勇, 雷鸣宇, 等. 离网式光伏电解制氢系统供电单元设计技术探讨[J]. 供用电, 2022, 39(1):24-30. |
[3] | PORTO M R, AGUADO M, GARDE R, et al. H2 Production from wind power in a wind farm in Spain[J]. Journal of Energy and Power Engineering, 2012(1):49-59. |
[4] | ZIOGOUC, IPSAKIS D, ELMASIDES C, et al. Automation and operation strategies in a stand-alone power system that uses solar and wind energy in conjunction with hydrogen long-term storage[J]. IFAC Proceedings Volumes, 2009, 42(9):86-91. |
[5] | DUTTON A G, BLEIJS J A M, DIENHART H. Experience in the design,sizing,economics, and implementation of autonomous wind-powered hydrogen production systems[J]. International Journal of Hydrogen Energy, 2000, 25(8):705-722. |
[6] | ULLEBERG Ø, NAKKEN T, ETÉ A. The wind/hydrogen demonstration system at Utsira in Norway: Evaluation of system performance using operational data and updated hydrogen energy system modeling tools[J]. International Journal of Hydrogen Energy, 2010, 35(5):1841-1852. |
[7] | CHONG L W, WONG Y W, RAJKUMAR R K, et al. Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems[J]. Renewable and Sustainable Energy Reviews, 2016(66):174-189. |
[8] | HARRISON K W, REMICK R, MARTIN G D, et al. Hydrogen production:fundamentals and case study summarie-s[C]// 18th World Hydrogen Energy Conference,2010:1-16. |
[9] | PURSIHEIMO E, HOLTTINEN H H, KOLJONEN T. Path towards 100 % renewable energy future and feasibility of power-to-gas technology in Nordic Countries[J]. IET Renewable Power Generation, 2017, 11(13):1695-1706. |
[10] | 李智, 刘涛, 张志伟, 等. 煤化工低碳技术及其与新能源耦合发展的研究进展[J]. 中国煤炭, 2022, 48(8):66-81. |
[11] | 卢继平, 白树华. 风光氢联合式独立发电系统的建模及仿真[J]. 电网技术, 2007, 31(22):75-84. |
[12] | 刘鹏飞. 风光氢储综合供电系统优化配置与能量管理研究[D]. 杭州: 浙江大学, 2017. |
[13] | 蒲雨辰, 李奇, 陈维荣, 等. 计及最小使用成本及储能状态平衡的电-氢混合储能孤岛直流微电网能量管理[J]. 电网技术, 2019, 43(3):918-927. |
[14] | 肖宇. 氢储能:支撑起智能电网和可再生能源发电规模化[J]. 中国战略新兴产业, 2016(1):46-49. |
[15] | 孔令国. 风光氢综合能源系统优化配置与协调控制策略研究[D]. 北京: 华北电力大学(北京), 2017. |
[16] | 都鹤, 吕洪, 杨代军. 风光互补发电制氢系统仿真研究进展[J]. 电源技术, 2017, 41(1):173-175. |
[17] | 舟丹. 我国建成首座利用可再生能源制氢的70MPa加氢站[J]. 中外能源, 2017, 22(8):7. |
[18] | 王海燕. 独立运行模式下微电网的能量管理与协调控制策略研究[D]. 西安: 西安理工大学, 2017. |
[19] | ZHOU T, FRANCOIS B, MEMBER S, et al. Real-Time emulation of a hydrogen-production process for assessment of an active wind-energy conversion system[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3):737-746. |
[20] | 郝利东. 风光耦合制氢系统建模与优化控制研究[D]. 石家庄: 河北科技大学, 2023. |
[21] | WILLIAMS B W. Unified synthesis of tapped-inductor DC-to-DC converters[J]. IEEE Transactions on Power Electronics. 2014, 29(10) :5370-5383. |
[22] | KIM K, CHA H, PARK S, et al. A modified series capacitor high conversion ratio DC-DC converter eliminating start-up voltage stress problem[J]. IEEE Transactions on Power Electronics, 2017, 33(1):8-12. |
[23] |
荣德生, 杨干兴, 胡举爽, 等. 具有开关电感单元的电感磁集成Buck变换器[J]. 电源学报, 2018, 16(3):23-27.
doi: 10.13234/j.issn.2095-2805.2018.3.23 |
[24] | 薛雅丽. Buck三电平直流变换器的研究[D]. 南京: 南京航空航天大学, 2003. |
[25] | ZHANG L, CHAKRABORTY S. An Interleaved series capa- citor tapped buck converter for high step-down DC/DC application[J]. IEEE Transactions on Power Electronics, 2019, 34(7):6565-6574. |
[26] | WANG Y F, XUE L K, WANG C S, et al. Interleaved high-conversion-ratio bidirectional DC-DC conver- ter for distributed energy-storage systems-circuit generation,analysis and design[J]. IEEE Transactions on Power Electronics, 2016, 31(8):5547-5561. |
[27] | 杨玉岗, 李涛, 冯本成. 交错并联磁集成双向DC/DC变换器的设计准则[J]. 中国电机工程学报, 2012, 32(30):37-45. |
[28] | LU S Z, MU M K, JIAO Y, et al. Coupled inductors in interleaved multiphase three-level DC-DC converter for high-power applications[J]. IEEE Transactions on Power Electronics, 2016, 31(1):120-133. |
[29] | ROBINSON J, JOVCIC D, JOOS G. Analysis and design of an offshore wind farm using a MV DC grid[J]. IEEE Transactions on Power Delivery, 2010, 25(4):2164-2173. |
[30] | JOVCIC D. Step-up DC-DC converter for megawatt size applications[J]. IET Power Electronics, 2009, 2(6):675-685. |
[31] | CHEN W, WU X, YAO L, et al. A step-up resonant converter for grid-connected renewable energy sources[J]. Transactions of China Electrotechnical Society, 2016, 30(6):3017-3029. |
[32] | DENG F, CHEN Z. Control of improved full-bridge three-level DC/DC converter for wind turbines in a DC grid[J]. IEEE Transactions on Power Electronics, 2013, 28(1):314-324. |
[33] | PARASTAR A, SEOK J. High-gain resonant switched capacitor cell-based DC/DC converter for offshore wind energy systems[J]. IEEE Transactions on Power Electronics, 2015, 30(2):644-656. |
[34] | 常怡然, 蔡旭. 大型海上全直流风场中基于MMC的风力发电变流器及其控制[J]. 中国电机工程学报, 2016, 36(14):3789-3797. |
[35] | WANG Y, CHEN G, WANG F. A novel hybrid three-level NPC topology with digital driven serial connected IGBTs for medium voltage multi-MW wind power converter:2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference & Exposition[C]. 2013. |
[36] | CHEN G, ZHANG J, ZHU M, et al. Optimized design for multi-MW wind power converter based on efficiency and reliability:2014 International Power Electronics Conference[C]. 2014. |
[37] | DIAZ M, CARDENAS R, ESPINOZA M, et al. Control of wind energy conversion systems based on the modular multilevel matrix converter[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11):8799-8801. |
[38] | 李娟, 杨晨, 谢少军. 一种用于光伏直流模块的高升压比直流变换器[J]. 电力电子技术, 2013, 47(3):51-53. |
[39] |
王磊, 郭瑞, 杨玉岗. 光伏微逆变器前级磁集成高增益直流变换器研究[J]. 电源学报, 2016, 14(3):108-117.
doi: 10.13234/j.issn.2095-2805.2016.3.108 |
[40] |
卓生荣, 皇甫宜耿. 一种光伏用高升压比高效率直流变换器[J]. 电源学报, 2016, 14(5):82-88.
doi: 10.13234/j.issn.2095-2805.2016.5.82 |
[41] | ALZAHRANI A, FERDOWSI M, SHAMSI P. A family of scalable non-isolated interleaved DC-DC boost converters with voltage multiplier cells[J]. IEEE Access, 2019(7):11707-11721. |
[42] | CHUB A, VINNIKOV D, LIIVIK L, et al. Multiphase quasi-Z-source DC-DC converters for residential distributed generation systems[J]. IEEE Transactions on Industrial Electronics, 2018, 65(10):8361-8371. |
[43] | TARZAMNI H, KOLAHIAN P, NIKAFROOZ A, et al. A multi-port DC-DC converter for bipolar MVDC micro-grid applications[J]. IET Power Electronics, 2019, 12(7):6031-6039. |
[44] | CHENG T, LU D C, QIN L. Non isolated single inductor DC/DC converter with fully reconfigurable structure for renewable energy applications[J]. Circuits and Systems II: Express Briefs, IEEE Transactions on, 2017, 65(5):351-355. |
[45] | CHEN Y M, HUANG A Q, YU X. A High step-up three-port DC-DC converter for stand-alone PV/battery power systems[J]. IEEE Transactions on Power Electronics, 2013, 28(11):5049-5062. |
[46] | YAU T Y, JIANG W Z, HWUK I. Bidirectional operation of high step-down converter[J]. IEEE Transactions on Power Electronics, 2015, 30(12):6829-6844. |
[47] | NI L, PATTERSON D J, HUDGINS J L. High power current sensorless bidirectional 16-phase interleaved DC-DC converter for hybrid vehicle application[J]. IEEE Transactions on Power Electronics, 2012, 27(3):1141-1151. |
[48] | BAHRAMI H, FARHANGI S, IMAN-EINI H, et al. A new interleaved coupled-inductor nonisolated soft switching bidirectional DC-DC converter with high voltage gain ratio[J]. IEEE Transactions on Industrial Electronics, 2017. 65(7):5529-5538. |
[49] | SHI H, SUN K, WU H, et al. A unified state-space modeling method for a phase-shift controlled bidirectional dual-active half-bridge converter[J]. IEEE Transactions on Power Electronics, 2019, 35(3): 3254-3265. |
[50] | 张剑光. 氢能产业发展展望-制氢与氢能储运[J]. 化工设计, 2019, 29(4):3-6,26,1. |
[51] | 杨博, 袁奕雯, 王洁璐. 高压储氢气瓶性能试验方法比较[J]. 化工装备技术, 2019, 40(4):43-47. |
[52] | 郭志钒, 巨永林. 低温液氢储存的现状及存在问题[J]. 低温与超导, 2019, 47(6):21-29. |
[53] | 王璐, 金之钧, 苏宇通. 新型固体储氢材料的研究进展[J]. 石油学报(石油加工), 2023, 39(1):229-239. |
[54] | 丛琳, 王楠, 李志远, 等. 电解水制氢储能技术现状与展望[J]. 电器与能效管理技术. 2021, 7(1):1-7. |
[55] | 李霞林, 郭力, 王成山, 等. 直流微电网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(1):2-16. |
[56] | 张犁, 孙凯, 吴田进, 等. 基于光伏发电的直流微电网能量变换与管理[J]. 电工技术学报, 2013, 28(2):248-254. |
[57] | WU D, TANG F, DRAGICEVIC T, et al. Coordinated control based on bus-signaling and virtual inertia for islanded DC microgrids[J]. IEEE Transactions on Smart Grid, 2017, 6(6):2627-2638. |
[58] | GU Y, XIANG X, LI W, et al. Mode-adaptive decentralized control for renewable DC microgrid with enhanced reliability and flexibility[J]. IEEE Transactions on Power Electronics, 2014, 29(9):5072-5080. |
[59] | VXIANGL IK, LI S, SMEDLEY K M. Decoupled PWM plus phase-shift control for a dual-half-bridge bidirectional DC-DC converter[J]. IEEE Transactions on Power Electronics. 2018. 33(8):7203-7213. |
[60] | MENG L, LUNA A, DÍAZ E R, et al. Flexible system integration and advanced hierarchical control architectures in the Microgrid Research Laboratory of Aalborg University[J]. IEEE Transactions on Industry Applications, 2016, 52(2):1736-1749. |
[61] | 蔡国伟, 孔令国, 彭龙, 等. 基于氢储能的主动型光伏发电系统建模与控制[J]. 太阳能学报, 2016, 37(10):2451-2459. |
[62] | 蔡国伟, 陈冲, 孔令国, 等. 风电/光伏/制氢/超级电容器并网系统建模与控制[J]. 电网技术, 2016, 40(10):2982-2990. |
[63] | YUN T, ZEDI W, YAN L, et al. Multi-energy storage system model based on electricity heat and hydrogen coordinated optimization for power grid flexibility[J]. CSEE Journal of Power and Energy Systems, 2019, 5(2):266-274. |
[64] | 张自东, 邱才明, 张东霞, 等. 基于深度强化学习的微电网复合储能协调控制方法[J]. 电网技术, 2019, 43(6):1914-1921. |
[65] | 盛万兴, 段青, 梁英, 等. 面向能源互联网的灵活配电系统关键装备与组网形态研究[J]. 中国电机工程学报, 2015(15):3760-3769. |
[66] | 孙继峰. 提升电解槽接地保护可靠性保证电解槽安全平稳运行[J]. 氯碱工业, 2018, 54(3):13-16. |
[67] | 石泽峰. 旭化成电解槽运行情况总结[J]. 氯碱工业, 2023, 59(6):14-17. |
[68] | 王清伟. 整流装置电解槽接地故障的探讨[J]. 石化技术, 2016(1):98. |
[69] |
施凯伦, 王毅, 王琛. 一种直流配电网交流侧不平衡情况下的电压脉动抑制策略[J]. 电力科学与工程, 2019, 35(4):1-8.
doi: 1672-0792(2019)04-0001-08 |
[70] | 周小平. 微电网功率协调控制关键技术研究[D]. 长沙: 湖南大学, 2018. |
[71] | 黄鑫健, 耿英三, 石晓光, 等. 直流熔断器的研究现状与发展前景[J]. 电器与能效管理技术, 2019(2):1-7. |
[72] | 刘路辉, 叶志浩, 付立军, 等. 快速直流断路器研究现状与展望[J]. 中国电机工程学报, 2017, 37(4):966-977. |
[73] | 王明阳. 直流微电网母线短路故障保护研究[D]. 济南: 山东大学, 2022. |
[74] | MOHANTY R, PRADHAN A K. DC Ring Bus micro-grid protection using the oscillation frequency and transient power[J]. IEEE Systems Journal, 2019, 13(1):875-884. |
[75] | 李海津. 多能源储能系统构建理论与关键技术研究[D]. 杭州: 浙江大学, 2018. |
[76] | KONG L, NIAN H. Collaborative control strategy of power electronic transformer and fault current limiter in DC microgrid[J]. The Journal of Engineering, 2017(13):1788-1792. |
[77] | MOHANTY R, PRADHAN A K. A superimposed current based unit protection scheme for DC microgrid[J]. IEEE Transactions on Smart Grid, 2018, 9(4):3917-3919. |
[78] | 张新建. 燃料电池汽车车载氢系统安全性分析[J]. 时代汽车, 2019, 3(2):98-100. |
[79] | TRIFKOVIC M, SHEIKHZADEH M, NIGIM K, et al. Modeling and control of a renewable hybrid energy system with hydrogen storage[J]. Institute of Electrical and Electronics Engineers, 2014, 22(1):169-179. |
[80] | ARNONE D, ARCAYA A D D, CALDAROLA C G. INGRID project High-capacity hydrogen-based green-energy storage solutions for grid balancing[J]. Gas for Energy, 2016 (2):18-23. |
[1] | HE Dongsheng, LIU Guangqi, XU Chengsheng. Design and Development of Arc Fault Detection and Protection Method and Device for High Voltage AC Circuit Breakers [J]. DIANQI YU NENGXIAO GUANLI JISHU, 2018, 0(10): 75-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||