LOW VOLTAGE APPARATUS ›› 2021, Vol. 0 ›› Issue (10): 33-41.doi: 10.16628/j.cnki.2095-8188.2021.10.006
• Research & Analysis • Previous Articles Next Articles
YAN Hu1, HU Jing1, WANG Zhe2
Received:2021-05-28
Online:2021-10-30
Published:2022-01-25
CLC Number:
YAN Hu, HU Jing, WANG Zhe. Research on Discharge State Estimation Method of Retired Power Battery[J]. LOW VOLTAGE APPARATUS, 2021, 0(10): 33-41.
| 指标 | 定义 | 描述 | 用途 | 与电池放电相关性 |
|---|---|---|---|---|
| OCV | u开=φ+-φ- | φ+—电池正极电位 φ-—电池负极电位 | 分析电池性能,包括估计SOC和SOH等参数 | 与电池放电直接相关性较弱 |
| SOC | SOC= | 相同条件下: Qs—剩余容量 Qz—额定容量 充满电时SOC=1 放空电时SOC=0 | 衡量电池剩余使用容量的相对大小 | 用于防止电池的过充和过放 |
| SOE | SOE(t)= | SOE(t)—t时刻状态 Eremain—剩余能量 Erated—额定能量 | 反映电池能量使用情况 | 与SOC类似,计算难度大 |
| SOH | SOH= | Qdischarge—额定容量 Qrated—剩余容量 二者为相同条件下测得 | 电池当前的特征指标与标称指标的偏离程度 | 与电池放电直接相关性较弱 |
| SOP | SOP=SOPc +(SOPp-SOPc)·f | Pcha—充电峰值功率 Pdis—放电峰值功率 Umax—充电截止电压 Umin—放电截止电压 R0—电池内阻 | 储能单元在当前荷电状态下能够释放和接受的最大功率 | 峰值功率和容量决定了电池的最大充放电能力,可用于放电能力评估 |
| 序号 | 电流 I/A | 电压 U/V | SOC/% | OCV /V | 内阻 /mΩ | SOP /W |
|---|---|---|---|---|---|---|
| 1 | 100.6 | 41.917 | 97.86 | 40.106 | 18.00 | 419 |
| 2 | 100.6 | 41.920 | 97.88 | 40.108 | 18.01 | 4 412 |
| 3 | 100.6 | 41.928 | 97.90 | 40.110 | 18.07 | 4 392 |
| 4 | 100.6 | 41.934 | 97.93 | 40.111 | 18.12 | 4 378 |
| 5 | 100.6 | 41.946 | 97.95 | 40.113 | 18.22 | 4 350 |
| 6 | 100.6 | 41.954 | 97.97 | 40.115 | 18.28 | 4 331 |
| 7 | 100.6 | 41.959 | 97.99 | 40.117 | 18.31 | 4 319 |
| 8 | 100.6 | 41.965 | 98.01 | 40.119 | 18.35 | 4 305 |
| 9 | 100.6 | 41.978 | 98.03 | 40.123 | 18.43 | 4 275 |
| 10 | 100.6 | 41.984 | 98.05 | 40.128 | 18.45 | 4 262 |
| 11 | 100.6 | 41.992 | 98.07 | 40.132 | 18.49 | 4 243 |
| 12 | 100.6 | 41.999 | 98.09 | 40.136 | 18.52 | 4 228 |
| 序号 | 电流 I/A | 电压 U/V | SOC/% | OCV /V | 内阻 /mΩ | SOP /W |
|---|---|---|---|---|---|---|
| 1 | 100.6 | 3.601 | 95.48 | 3.333 | 2.66 | 361 |
| 2 | 100.6 | 3.577 | 92.00 | 3.314 | 2.61 | 394 |
| 3 | 100.6 | 3.571 | 95.10 | 3.329 | 2.41 | 406 |
| 4 | 100.6 | 3.589 | 92.57 | 3.316 | 2.71 | 377 |
| 5 | 100.6 | 3.502 | 83.00 | 3.305 | 1.96 | 542 |
| 6 | 100.6 | 3.510 | 87.00 | 3.307 | 2.02 | 523 |
| 7 | 100.6 | 3.593 | 95.57 | 3.334 | 2.57 | 372 |
| 8 | 100.6 | 3.588 | 95.76 | 3.336 | 2.50 | 379 |
| 9 | 100.6 | 3.496 | 81.00 | 3.304 | 1.91 | 558 |
| 10 | 100.6 | 3.564 | 93.88 | 3.321 | 2.42 | 416 |
| 11 | 100.6 | 3.595 | 85.00 | 3.306 | 2.87 | 368 |
| 12 | 100.6 | 3.548 | 85.00 | 3.306 | 2.41 | 440 |
| 电池序号 | 开路状态/V | 放电/C | 充电/C |
|---|---|---|---|
| 1 | 0.037 3 | 0.792 3 | 0.815 7 |
| 2 | 0.000 0 | 0.618 0 | 0.741 6 |
| 3 | 0.052 8 | 0.740 1 | 0.764 1 |
| 4 | 0.000 0 | 0.611 7 | 0.772 9 |
| 5 | 0.000 0 | 0.593 0 | 0.633 0 |
| 6 | 0.024 6 | 0.605 5 | 0.642 7 |
| 7 | 0.039 9 | 0.779 2 | 0.811 5 |
| 8 | 0.091 4 | 0.824 8 | 0.811 5 |
| 9 | 0.010 3 | 0.599 2 | 0.618 5 |
| 10 | 0.042 6 | 0.656 1 | 0.737 0 |
| 11 | 0.007 2 | 0.599 2 | 0.695 3 |
| 12 | 0.005 0 | 0.593 0 | 0.662 0 |
| U | 3.525 6 | 0.347 2 | 0.271 8 |
| [1] |
KIM T H, PARK J S, CHANG S K, et al. The current move of lithium ion batteries towards the next phase[J]. Advanced Energy Materials, 2012, 2(7):860-872.
doi: 10.1002/aenm.201200028 |
| [2] | 刘云, 王海欣, 黄海宏. 退役锂电池充放电系统[J]. 电器与能效管理技术, 2019(6):53-57. |
| [3] | 任军, 王凯, 任宝森. 基于改进模型和无迹卡尔曼滤波的锂离子电池荷电状态估计[J]. 电器与能效管理技术, 2019(4):64-70,78. |
| [4] | 王震坡, 孙逢春, 林程. 不一致性对动力电池组使用寿命影响的分析[J]. 北京理工大学学报, 2006(7):577-580. |
| [5] | 李杰. 纯电动汽车电池均衡管理系统设计与研究[D]. 太原:太原理工大学, 2018. |
| [6] | 张凤麒. 车辆用锂离子动力电池特性分析[J]. 机电技术, 2021(1):48-52,67. |
| [7] | 刘宗锋, 姜宁, 汪卫东, 等. 不同温度下三元锂电池自放电量预测方法[J]. 重庆理工大学学报(自然科学), 2021, 35(1):25-30. |
| [8] | 裴普成, 陈嘉瑶, 吴子尧. 锂离子电池自放电机理及测量方法[J]. 清华大学学报(自然科学版), 2019, 59(1):53-65. |
| [9] |
ZHANG H, ZHAO L, CHEN Y. A lossy counting-based state of charge estimation method and its application to electric vehicles[J]. Energies, 2015, 8(12):13811-13828.
doi: 10.3390/en81212395 |
| [10] | PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HE-V battery packs:Part3.State and parameter estimation[J]. Joumal of Power sources, 2004, 134(2):277-292. |
| [11] |
ZHANG W, SHI W, MA Z. Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery[J]. Journal of Power Sources, 2015, 289:50-62.
doi: 10.1016/j.jpowsour.2015.04.148 |
| [12] |
ZENG X, LI J, SINGH N. Recycling of spent lithium-ion battery:a critical review[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(10):1129-1165.
doi: 10.1080/10643389.2013.763578 |
| [13] | 徐虹, 贺鹏, 艾欣. 电动汽车充电功率需求分析模型研究综述[J]. 现代电力, 2012, 29(3):51-56. |
| [14] |
SHANNON C E, A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27(3):379-423.
doi: 10.1002/bltj.1948.27.issue-3 |
| [15] | 叶宗裕. 关于多指标综合评价中指标正向化和无量纲化方法的选择[J]. 浙江统计, 2003(4):24-25. |
| [16] | 李晴, 陈鹏宇. 指标无量纲化方法对熵权法评价结果的影响[J]. 科技资讯, 2019(7):184-186. |
| [17] | 刘思峰, 杨英杰. 灰色系统研究进展(2004—2014)[J]. 南京航空航天大学学报, 2015, 47(1):1-18. |
| [18] | CHAWLA N V, JAPKOWICZ N, LCZ A K. Editorial:Special issue on learning from imbalanced data sets[J]. ACM SIGKDD Explorations News Letter, 2004. 6(1):1-6. |
| [19] | SHAWE-TAYLOR J, CRISTIANINI N. Kernel methods for pattern analysis[M]. Cambridge: Cambridge University Press, 2004. |
| [20] | POLI R, KENNEDY J, BLACKWELL T. Particle swarm optimization[J]. Swarm Intelligence, 2007(1):33-57. |
| [21] | KENNEDY J. Particle swarm optimization:encyclopedia of machine learning[M]. New York:Springer US, 2010. |
| [22] | 谢宝江, 娄伟明, 罗扬帆, 等. 基于H_∞无迹卡尔曼滤波的退役锂离子电池SOC估计[J]. 浙江电力, 2020, 39(8):53-60. |
| [23] | 林武, 史新民, 蒋丽丽, 等. 动力电池梯次利用的异构储能电站设计与实践[J]. 浙江电力, 2020, 39(5):41-49. |
| [24] | 明彤彤, 王凯, 田冬冬, 等. 基于LSTM神经网络的锂离子电池荷电状态估算[J]. 广东电力, 2020, 33(3):26-33. |
| [1] | WANG Genghuan, CHEN Wei, XU Haibo. Research on Residual Current Detection Method Based on Tunnel Magnetoresistance Effect [J]. LOW VOLTAGE APPARATUS, 2025, 0(5): 25-33. |
| [2] | LIU Hao, HOU Chunguang, GAO Youhua. Research on Partial Discharge Diagnosis Algorithm for Cable Accessories Based on Multi Sensor Information Fusion [J]. LOW VOLTAGE APPARATUS, 2024, 0(10): 36-41. |
| [3] | SHI Baopeng, HOU Chunguang, CAO Yundong, XU Xiaogang, JIANG Xingwei. Thermal Analysis and Temperature Prediction of 12 kV Switchgear Current-Carrying Loop [J]. LOW VOLTAGE APPARATUS, 2023, 0(8): 68-75. |
| [4] | QIAO Qingyun, WANG Zhaobin, LIU Baixin, CHEN Kangning. Research on Storage Life Prediction of Electromagnetic Relay Based on WOA-SVM Model [J]. LOW VOLTAGE APPARATUS, 2023, 0(2): 1-5. |
| [5] | ZHAO Weitao, LI Zhao, YASHENG·Dilari, CHEN Ruiwen, HU Sideng. Research on Numerical Analysis Method for Non-Ideal Characteristics of DC Converter Output Impedance [J]. LOW VOLTAGE APPARATUS, 2023, 0(2): 11-15. |
| [6] | HUANG Junzhe, YIN Yuhan, TANG Mingxuan, MEI Fei. Short-Term Photovoltaic Output Prediction Based on CEEMDAN and Improved LSTM [J]. LOW VOLTAGE APPARATUS, 2023, 0(10): 36-43. |
| [7] | CHEN Xinkai, BAO Guanghai. Series Arc Fault Detection Method for Photovoltaic System Based on Improved Singular Value Decomposition Denoising Algorithm [J]. LOW VOLTAGE APPARATUS, 2023, 0(10): 61-69. |
| [8] | XU Jian, WANG Jiahua, CHEN Yufeng. Short Term Load Prediction Method for Micro Grid Based on Joint Optimization of LSTM and PSO [J]. LOW VOLTAGE APPARATUS, 2022, 0(9): 74-79. |
| [9] | XIE Yunhao, WU Ziran, CHEN Wei, BAO Xiaozhong, XU Haibo. Analysis and Optimization of Transmission Characteristics Of Wide Range Current Transformers Based on Multi-Objective Particle Swarm Algorithm [J]. LOW VOLTAGE APPARATUS, 2022, 0(8): 8-17. |
| [10] | LI Ruixin, LIU Shuxin, CAO Yundong. Operation State Identification of AC Contactor Based on Vibration Signal [J]. LOW VOLTAGE APPARATUS, 2022, 0(6): 39-44. |
| [11] | TIAN Yanfeng, WANG Shun, WANG Zhe, LIU Yang, XING Zuoxia. Short Term Prediction of Wind Power Based on Nuclear Improvement to Reduce Particles of Learning Machines [J]. LOW VOLTAGE APPARATUS, 2022, 0(3): 39-44. |
| [12] | WU Juzhuo, CHEN Shuyuan, NIU Haiqing, LU Xiaopeng. Application of Wavelet Neural Network Based on Chaotic Particle Swarm Optimization Algorithm in Power Quality Disturbance Signals Classification [J]. LOW VOLTAGE APPARATUS, 2022, 0(2): 68-73. |
| [13] | CHENG Jiawei, MU Longhua, LIANG Ziwen. Optimal Dispatch of Micro Energy Grid Based on Exergy Efficiency [J]. LOW VOLTAGE APPARATUS, 2021, 0(8): 43-50. |
| [14] | WU Changlong, LUO Huawei, QIN Zhengbin, YU Haifeng, XU Zhiqiang. Analysis of Grid-Side Energy Storage Configuration Strategy Based on Bi-Level Programming [J]. LOW VOLTAGE APPARATUS, 2021, 0(4): 85-93. |
| [15] | QING Qimao, ZHOU Taiwu, LI Wenli. Research on Detection Method of AC Contactor Holding Vibration Based on Support Vector Machine [J]. DIANQI YU NENGXIAO GUANLI JISHU, 2020, 0(6): 61-64. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||