LOW VOLTAGE APPARATUS ›› 2024, Vol. 0 ›› Issue (11): 45-57.doi: 10.16628/j.cnki.2095-8188.2024.11.006
• Energy Storage Technology • Previous Articles Next Articles
ZHANG Zhoutong, SHENG Wenjuan
Received:
2024-07-31
Online:
2024-11-30
Published:
2024-12-11
CLC Number:
ZHANG Zhoutong, SHENG Wenjuan. Remaining Useful Life Prediction of Lithium Batteries Based on ISW and Optimized VMD-LSTM[J]. LOW VOLTAGE APPARATUS, 2024, 0(11): 45-57.
预测 起点 | 电池 型号 | SW-LSTM | ISW-LSTM | VMD-ISW-LSTM | |||
---|---|---|---|---|---|---|---|
RRMSE | RMAPE/% | RRMSE | RMAPE/% | RRMSE | RMAPE/% | ||
第 60 个 循 环 | B0005 | 0.019 7 | 1.13 | 0.012 1 | 0.73 | 0.010 2 | 0.66 |
B0006 | 0.036 8 | 2.47 | 0.015 0 | 1.08 | 0.013 0 | 0.81 | |
B0007 | 0.020 8 | 1.01 | 0.013 7 | 0.79 | 0.005 8 | 0.33 | |
B0018 | 0.023 0 | 1.00 | 0.012 4 | 0.76 | 0.009 0 | 0.54 | |
第 80 个 循 环 | B0005 | 0.019 0 | 0.98 | 0.008 9 | 0.62 | 0.001 7 | 0.10 |
B0006 | 0.025 6 | 1.21 | 0.013 2 | 0.98 | 0.004 2 | 0.15 | |
B0007 | 0.015 1 | 0.60 | 0.004 3 | 0.26 | 0.001 3 | 0.06 | |
B0018 | 0.021 5 | 0.76 | 0.007 3 | 0.41 | 0.002 6 | 0.15 |
[1] | 刘倩倩, 赵言本, 吕超. 磷酸铁锂电池大倍率充放电模型仿真研究[J]. 电器与能效管理技术, 2020(5):57-61. |
[2] | 殷光治, 郑漳华, 王歆, 等. 能源安全视角下的储能技术发展路径分析[J]. 电器与能效管理技术, 2022(5):1-7. |
[3] | 程俊涵, 王书礼, 蔡志远. 基于AE-LSTM的锂电池剩余使用寿命预测[J]. 电器与能效管理技术, 2023(9):69-75. |
[4] | 李晓华. 基于IPSO-LIESN网络的锂电池剩余使用寿命预测[J]. 电器与能效管理技术, 2023(5):51-58. |
[5] | WANG Z L, LIU Y L, WANG F, et al. Capacity and remaining useful life prediction for lithium-ion batteries based on sequence decomposition and a deep-learning network[J]. Energy Storage, 2023,72:1-13. |
[6] | LI X J, YU D. The development of machine learning-based remaining useful life prediction for lithium-ion batteries[J]. Energy Chemistry, 2023,82:103-121. |
[7] | GUO X F, WANG K Z, YAO S, et al. RUL prediction of lithium ion battery based on CEEMDAN-CNN BiLSTM model[J]. Energy Reports, 2023, 9(10):1299-1306. |
[8] | SONG K, YUE X G, HU D, et al. Remaining life prediction of lithium-ion batteries based on health management:A review[J]. Energy Storage, 2023,57:1-17. |
[9] | PANG X Q, HUANG R, WEN J, et al. A lithium-ion battery rul prediction method considering the capacity regeneration phenomenon[J]. Energies, 2019, 12(11):1-14. |
[10] | 陆小鹏, 吴炬卓, 牛海清, 等. 基于改进小波变换阈值估计法去除电缆绝缘局部放电信号白噪声[J]. 电器与能效管理技术, 2021(3):24-28. |
[11] | CHEN Z W, SHI N, JI Y F, et al. Lithium-ion batteries remaining useful life prediction based on BLS-RVM[J]. Energy, 2021,234:1-13. |
[12] | 杨秀, 胡钟毓, 田英杰, 等. 基于EMD-Stacking-MLR的台区配变短期负荷预测方法[J]. 电器与能效管理技术, 2022(2):53-62. |
[13] | 黄浚哲, 印宇涵, 汤明轩, 等. 基于CEEMDAN与改进LSTM的短期光伏出力预测[J]. 电器与能效管理技术, 2023(10):36-43. |
[14] | 陈翔, 夏飞. 基于CEEMD-AKF的锂电池剩余使用寿命预测方法[J]. 哈尔滨理工大学学报, 2023, 28(3):28-36. |
[15] | 刘树鑫, 刘学识, 李静, 等. 基于SSA-ELM的直流串联故障电弧检测方法研究[J]. 电器与能效管理技术, 2022(10):65-73. |
[16] | 徐达, 王海瑞, 朱贵富. 基于VMD 和优化CNN-GRU的锂电池剩余使用寿命间接预测[J]. 现代电子技术, 2024, 47(2):133-139. |
[17] | HAN C Y, YUAN H M. Sliding window pooling extreme learning machine based capacity prediction of lithium-ion batteries[J]. Physics, 2023,2433:1-6. |
[18] | ANSARI S, HUSSAIN A, AYOB A, et al. Optimized data-driven approach for remaining useful life prediction of lithium-ion batteries based on sliding window and systematic sampling[J]. Energy Storage, 2023,73:1-22. |
[19] | 王胜研, 王娟娟. 基于VMD-FE-SSA-SVR模型的超短期风速预测[J]. 电器与能效管理技术, 2024(4):57-64. |
[20] | WANG Z Q, LIU N, GUO Y M. Adaptive sliding window LSTM NN based RUL prediction for lithium-ion batteries integrating LTSA feature reconstruction[J]. Neurocomputing, 2021,466:178-189. |
[21] | SAEED H A, WANG H, PENG M J. Online fault monitoring based on deep neural network & sliding window technique[J]. Progress in Nuclear Energy, 2020,121:1-10. |
[22] | 许建, 王家华, 陈玉峰. 基于LSTM和PSO联合优化的微电网短期负荷预测方法[J]. 电器与能效管理技术, 2022(9):74-79. |
[23] | 李亚茹, 张宇来, 王佳晨. 面向超参数估计的贝叶斯优化方法综述[J]. 计算机科学, 2022, 49(增刊1):86-92. |
[24] | 谢鸿凯, 鲍光海. 基于参数优化变分模态分解的交流继电器交流声故障特征提取[J]. 电器与能效管理技术, 2022(6):51-56. |
[1] | MA Dongkun, WANG Zhaobin, HE Tianyang. A Comprehensive Review of Electromagnetic Relay Remaining Useful Life Prediction Methods [J]. LOW VOLTAGE APPARATUS, 2024, 0(7): 1-8. |
[2] | LI Yang, SHI Zhengang. Research on SOC Estimation of Lithium Battery Based on PSO-BP-UKF Algorithm [J]. LOW VOLTAGE APPARATUS, 2024, 0(6): 42-48. |
[3] | CUI Xiaodan, WU Jialong, DENG Kui, WANG Yanpin, FENG Jiaqi, LI Yajie. Online State of Charge Estimation of Lithium-ion Battery Based on Improved Extended Kalman Filter Algorithm [J]. LOW VOLTAGE APPARATUS, 2024, 0(6): 49-58. |
[4] | XU Shouping, HU Juan, FU Shanshan, CHEN Juan. Research on SOC Estimation of Lithium Battery Based on GRA-MEA-BP Algorithm [J]. LOW VOLTAGE APPARATUS, 2023, 0(9): 55-61. |
[5] | CHENG Junhan, WANG Shuli, CAI Zhiyuan. Prediction of Remaining Service Life of Lithium Battery Based on AE-LSTM [J]. LOW VOLTAGE APPARATUS, 2023, 0(9): 69-75. |
[6] | LI Xiaohua. Remaining Useful Life Prediction of Lithium Batteries Based on IPSO-LIESN network [J]. LOW VOLTAGE APPARATUS, 2023, 0(5): 51-58. |
[7] | HUANG Junzhe, YIN Yuhan, TANG Mingxuan, MEI Fei. Short-Term Photovoltaic Output Prediction Based on CEEMDAN and Improved LSTM [J]. LOW VOLTAGE APPARATUS, 2023, 0(10): 36-43. |
[8] | ZHANG Yuhan, LI Ruoyu, JIANG Chuan, LIU Zhao, SUN Jinlei. Design of Battery State Information Acquisition System Based on 4G Wireless Communication [J]. DIANQI YU NENGXIAO GUANLI JISHU, 2020, 0(5): 100-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||